图像去雨Python代码
时间: 2023-05-22 07:06:39 浏览: 80
基于Python实现图像去雨、去模糊、去噪的完整源码+数据(高分项目).zip
5星 · 资源好评率100%
以下是一个基于深度学习的图像去雨 Python 代码示例:
```
# 导入相应模块
import cv2
import numpy as np
import tensorflow as tf
# 定义模型
class DerainModel(tf.keras.Model):
def __init__(self):
super(DerainModel, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu')
self.conv2 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu')
self.conv3 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu')
self.conv4 = tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', activation='relu')
self.conv5 = tf.keras.layers.Conv2D(filters=3, kernel_size=(3, 3), padding='same', activation='relu')
self.pooling = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)
def call(self, inputs):
c1 = self.conv1(inputs)
c2 = self.conv2(c1)
p1 = self.pooling(c2)
c3 = self.conv3(p1)
c4 = self.conv4(c3)
p2 = self.pooling(c4)
out = self.conv5(p2)
return out
# 加载数据
def load_data():
# 加载训练集
train_data = []
train_labels = []
for i in range(1, 201):
img = cv2.imread(f'./rainy_image/{i}.jpg')
label = cv2.imread(f'./gt_image/{i}.jpg')
train_data.append(img)
train_labels.append(label)
# 加载测试集
test_data = []
test_labels = []
for i in range(201, 296):
img = cv2.imread(f'./rainy_image/{i}.jpg')
label = cv2.imread(f'./gt_image/{i}.jpg')
test_data.append(img)
test_labels.append(label)
return np.array(train_data), np.array(train_labels), np.array(test_data), np.array(test_labels)
# 数据预处理
def pre_process(data, labels):
data = data / 255.0
labels = labels / 255.0
return data, labels
# 训练模型
def train():
# 加载数据
train_data, train_labels, test_data, test_labels = load_data()
train_data, train_labels = pre_process(train_data, train_labels)
test_data, test_labels = pre_process(test_data, test_labels)
# 定义模型
model = DerainModel()
optimizer = tf.keras.optimizers.Adam()
model.compile(optimizer=optimizer, loss='mse')
# 训练模型
model.fit(train_data, train_labels, validation_data=(test_data, test_labels), batch_size=16, epochs=20)
# 保存模型
model.save('./derain_model.h5')
# 图像去雨
def derain(img_path):
# 加载模型
model = tf.keras.models.load_model('./derain_model.h5')
# 读取图片
img = cv2.imread(img_path)
# 图像预处理
x = np.expand_dims(img, axis=0)
x = pre_process(x, x)
# 图像去雨
y = model.predict(x)
# 显示结果
y = np.clip(y, 0, 1) * 255
y = y.astype(np.uint8)
cv2.imshow('derain', y[0])
cv2.waitKey()
# 训练模型
train()
# 图像去雨
derain('./test_image/1.jpg')
```
注意:这只是一个示例,实际的去雨效果可能会受限于模型质量、数据集质量等多种因素。
阅读全文