已知负荷数据是一个24×5的数组,第一列是时间列,写一组lstm负荷预测的matlab代码,
时间: 2024-02-22 11:57:03 浏览: 74
好的,以下是一个简单的LSTM负荷预测的Matlab代码示例。假设你已经准备好了负荷数据数组load_data,其中第一列是时间列,而其他列是负荷数据。
```
% 按时间排序
load_data = sortrows(load_data, 1);
% 生成训练集和测试集
train_ratio = 0.8;
train_size = floor(train_ratio * size(load_data, 1));
train_data = load_data(1:train_size, 2:end);
test_data = load_data(train_size+1:end, 2:end);
% 数据归一化
train_data_norm = normalize(train_data);
test_data_norm = normalize(test_data);
% 准备训练数据
X_train = [];
Y_train = [];
n_steps = 3; % 每个时间步长包含的数据点数
for i = n_steps:size(train_data_norm, 1)
X_train = [X_train; train_data_norm(i-n_steps+1:i, :)];
Y_train = [Y_train; train_data_norm(i, :)];
end
% 调整训练数据的形状
X_train = reshape(X_train, [size(X_train,1), n_steps, size(train_data,2)-1]);
Y_train = reshape(Y_train, [size(Y_train,1), size(train_data,2)-1]);
% 构建LSTM模型
input_size = size(train_data,2)-1;
output_size = size(train_data,2)-1;
num_hidden_units = 64;
layers = [ ...
sequenceInputLayer(input_size)
lstmLayer(num_hidden_units,'OutputMode','last')
fullyConnectedLayer(output_size)
regressionLayer];
% 训练模型
opts = trainingOptions('adam', ...
'MaxEpochs',50, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',30, ...
'Verbose',0, ...
'Plots','training-progress');
trained_net = trainNetwork(X_train, Y_train, layers, opts);
% 准备测试数据
X_test = [];
Y_test = [];
for i = n_steps:size(test_data_norm, 1)
X_test = [X_test; test_data_norm(i-n_steps+1:i, :)];
Y_test = [Y_test; test_data_norm(i, :)];
end
% 调整测试数据的形状
X_test = reshape(X_test, [size(X_test,1), n_steps, size(test_data,2)-1]);
Y_test = reshape(Y_test, [size(Y_test,1), size(test_data,2)-1]);
% 进行预测
Y_pred = predict(trained_net, X_test);
% 反归一化预测结果
Y_pred = Y_pred .* max(train_data) + min(train_data);
Y_test = Y_test .* max(train_data) + min(train_data);
% 绘制预测结果
figure
plot(Y_test(:,1), 'b')
hold on
plot(Y_pred(:,1), 'r')
legend('真实值', '预测值')
title('负荷预测结果')
xlabel('时间步长')
ylabel('负荷值')
```
需要注意的是,这只是一个简单的示例代码,实际应用中需要根据数据特点和需求进行调整和优化。
阅读全文