使用鸢尾花数据集编写含三层DBN的多次迭代训练的代码
时间: 2023-05-19 20:01:23 浏览: 161
这是鸢尾花数据集
5星 · 资源好评率100%
以下是使用鸢尾花数据集编写含三层DBN的多次迭代训练的代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义三层DBN模型
dbn = Pipeline(steps=[
('rbm1', BernoulliRBM(n_components=50, learning_rate=0.01, n_iter=100)),
('rbm2', BernoulliRBM(n_components=20, learning_rate=0.01, n_iter=100)),
('rbm3', BernoulliRBM(n_components=10, learning_rate=0.01, n_iter=100))
])
# 多次迭代训练
for i in range(10):
dbn.fit(X_train)
# 在测试集上进行预测
y_pred = dbn.predict(X_test)
# 输出预测结果
print(y_pred)
```
希望这个代码对你有所帮助!
阅读全文