smote算法matlab代码
时间: 2023-09-03 20:09:24 浏览: 143
下面是使用SMOTE算法进行过采样的Matlab代码:
```matlab
% load your dataset
data = load('your_dataset.mat');
X = data.X;
y = data.y;
% apply SMOTE algorithm
smote_perc = 200; % percentage of SMOTE oversampling
k = 5; % number of nearest neighbors to consider
synth_samples = smote(X, y, smote_perc, k);
% combine original and synthetic samples
X_resampled = [X; synth_samples];
y_resampled = [y; ones(size(synth_samples, 1), 1)];
% train your model with the resampled data
model = trainModel(X_resampled, y_resampled);
```
其中,`smote.m`是SMOTE算法的函数,`trainModel`是你训练模型的函数,可以根据你选择的模型进行修改。
相关问题
smote算法MATLAB代码和详解
SMOTE (Synthetic Minority Over-sampling Technique) 是一种经典的过采样方法,用于处理分类问题中的不平衡数据。在MATLAB中,你可以使用`imbalanceLearn`库或者自编码器等工具实现SMOTE。以下是使用`imbalanceLearn`包的一个简单例子:
```matlab
% 首先,你需要安装imbalanceLearn库,如果没有安装,可以使用下面命令安装
if ~exist('imbalanceLearn', 'dir')
installToolbox('imblearn')
end
% 假设你有不平衡的数据集data和对应的标签target
[~, idx] = ismember(target, [0, 1]); % 确定 minority class (假设0为少数类)
data少数类 = data(idx,:);
target少数类 = target(idx);
% 使用SMOTE函数对少数类数据进行过采样
smote = SMOTE; % 创建SMOTE对象
augmentedData = smote.fitSample(data少数类, target少数类); % 进行过采样
augmentedLabels = smote.labels; % 获取新的标签
% 结果augmentedData和augmentedLabels分别包含过采样的特征和标签
```
SMOTE的工作原理是基于实例的,它会为每个少数类样本找到其k个最近的同类邻居,然后在它们之间生成新的合成样本。这有助于保持样本的局部结构,并减少噪声影响。
使用matlab编写smote算法的代码并注释
以下是使用MATLAB编写SMOTE算法的代码,并附有注释:
```matlab
function [X_resampled, y_resampled] = smote(X, y, k, perc, minorityClass)
% Function to perform SMOTE (Synthetic Minority Over-sampling Technique)
% Inputs:
% X - Matrix of features (rows = observations, columns = features)
% y - Vector of labels (rows = observations)
% k - Number of nearest neighbors to use for SMOTE
% perc - Percentage of SMOTE samples to generate (e.g. 200% = 2.0)
% minorityClass - Label of the minority class
% Outputs:
% X_resampled - Matrix of resampled features
% y_resampled - Vector of resampled labels
% Find the minority class observations
minorityIdx = find(y == minorityClass);
numMinority = length(minorityIdx);
% Calculate the number of SMOTE samples to generate
numSMOTE = round(numMinority * perc);
numNew = numSMOTE - numMinority;
% Find the k nearest neighbors for each minority class observation
knn = KDTreeSearcher(X);
knnIdx = knnsearch(knn, X(minorityIdx,:), 'K', k+1);
knnIdx = knnIdx(:,2:end);
% Initialize matrix for SMOTE samples
newSamples = zeros(numNew, size(X,2));
% Generate synthetic samples for each minority class observation
for i = 1:numMinority
% Choose one of the k nearest neighbors randomly
nnIdx = randsample(k, 1);
nn = X(knnIdx(i,nnIdx),:);
% Generate a new sample by interpolating between the minority class
% observation and the randomly chosen nearest neighbor
diff = nn - X(minorityIdx(i),:);
newSample = X(minorityIdx(i),:) + rand(1,size(X,2)).*diff;
% Add the new sample to the matrix of SMOTE samples
newSamples(i,:) = newSample;
end
% Combine the original and SMOTE samples
X_resampled = [X; newSamples];
y_resampled = [y; repmat(minorityClass, numNew, 1)];
end
```
注释中解释了函数的输入和输出以及变量的含义。函数的主要功能是生成合成少数类样本,其中包括计算SMOTE样本的数量,找到每个少数类观测的k个最近邻居,以及使用这些最近邻居生成合成样本。最后,将原始样本和合成样本组合起来以形成平衡数据集。
阅读全文