var = tf.global_variables() var_to_restore = [val for val in var if 'conv1' in val.name or 'conv2'in val.name] saver = tf.train.Saver(var_to_restore ) saver.restore(sess, os.path.join(model_dir, model_name)) var_to_init = [val for val in var if 'conv1' not in val.name or 'conv2'not in val.name] # tf.initialize_variables(var_to_init) tf.variables_initializer(var_to_init)
时间: 2023-06-08 15:07:13 浏览: 156
这段代码是在TensorFlow中定义了两个变量——var和var_to_restore。其中,var是保存所有模型变量的列表,而var_to_restore是选出了其中包含'conv1'或'conv2'的模型变量的子列表。接着,代码创建了一个Saver对象,并将选出的模型变量列表传入其中,以便将它们从预训练模型中恢复。最后,代码又定义了一个变量列表var_to_init,用于保存除'conv1'和'conv2'以外的其他模型变量。这些模型变量将用于初始化模型中的参数。
相关问题
帮我构建一个cnn网络,tensorflow架构,训练集x为71列矩阵,y为三列矩阵,训练好模型后,开始预测,预测集输入x_1为71列矩阵,输出y_1为3列矩阵
好的,我可以帮你构建一个简单的CNN网络,如下所示:
```python
import tensorflow as tf
# 定义输入输出的维度
input_dim = 71
output_dim = 3
# 定义输入输出的占位符
X = tf.placeholder(tf.float32, shape=[None, input_dim], name='input')
y = tf.placeholder(tf.float32, shape=[None, output_dim], name='output')
# 定义卷积层和池化层
conv1 = tf.layers.conv1d(inputs=X, filters=32, kernel_size=5, activation=tf.nn.relu, padding='same')
pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=2)
conv2 = tf.layers.conv1d(inputs=pool1, filters=64, kernel_size=5, activation=tf.nn.relu, padding='same')
pool2 = tf.layers.max_pooling1d(inputs=conv2, pool_size=2, strides=2)
# 将卷积层和池化层的输出展平
flatten = tf.layers.flatten(pool2)
# 定义全连接层
dense1 = tf.layers.dense(inputs=flatten, units=256, activation=tf.nn.relu)
dense2 = tf.layers.dense(inputs=dense1, units=128, activation=tf.nn.relu)
# 定义输出层
logits = tf.layers.dense(inputs=dense2, units=output_dim, activation=None)
# 定义损失函数和优化器
loss = tf.reduce_mean(tf.square(logits - y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
# 定义预测操作和模型保存器
prediction = tf.identity(logits, name='prediction')
saver = tf.train.Saver()
```
这个CNN网络有两个卷积层和池化层,以及两个全连接层和一个输出层。你需要根据你的具体情况来调整卷积层和全连接层的参数。
在训练模型时,你可以使用以下代码:
```python
import numpy as np
# 加载训练集和测试集
train_X = np.load('train_X.npy')
train_y = np.load('train_y.npy')
test_X = np.load('test_X.npy')
# 定义训练和测试的批次大小
batch_size = 32
# 创建会话并初始化变量
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 训练模型
for epoch in range(num_epochs):
num_batches = len(train_X) // batch_size
for i in range(num_batches):
batch_X = train_X[i*batch_size:(i+1)*batch_size]
batch_y = train_y[i*batch_size:(i+1)*batch_size]
_, loss_val = sess.run([optimizer, loss], feed_dict={X: batch_X, y: batch_y})
print('Epoch {} loss: {}'.format(epoch+1, loss_val))
# 保存模型
saver.save(sess, 'model.ckpt')
```
在预测时,你可以使用以下代码:
```python
# 加载模型
with tf.Session() as sess:
saver.restore(sess, 'model.ckpt')
# 预测输出
y_1 = sess.run(prediction, feed_dict={X: x_1})
```
其中,`x_1`为你的预测集输入。希望这个CNN网络能够帮助到你!
阅读全文