使用tushare获取股票列表数据,使用多线程计算所有股票最近3个月每日不低于开盘价3%的股票数量
时间: 2024-02-06 17:12:30 浏览: 81
好的,这是一个获取股票列表数据并使用多线程计算股票数据的问题。以下是示例代码:
```python
import tushare as ts
import datetime
import threading
# 获取所有股票的代码和名称
def get_stock_list():
stock_list = ts.get_stock_basics()
return stock_list
# 定义线程函数
def calc_stock_count(code_list, start, end, result):
count = 0
for code in code_list[start:end]:
data = ts.get_hist_data(code)
if data is None:
continue
for date, row in data.iterrows():
if date < three_month_ago:
break
if row['open'] * 1.03 <= row['close'] and row['close'] != 0 and row['open'] != 0 and row['high'] != 0 and row['low'] != 0:
count += 1
result.append(count)
# 获取当前日期
today = datetime.datetime.now().strftime('%Y-%m-%d')
# 获取三个月前的日期
three_month_ago = (datetime.datetime.now() - datetime.timedelta(days=90)).strftime('%Y-%m-%d')
# 获取股票列表
stock_list = get_stock_list()
# 定义线程数和每个线程处理的数据量
thread_num = 4
batch_size = len(stock_list) // thread_num
# 定义结果列表和线程列表
result = []
threads = []
# 创建线程并启动
for i in range(thread_num):
start = i * batch_size
end = start + batch_size
if i == thread_num - 1:
end = len(stock_list)
t = threading.Thread(target=calc_stock_count, args=(stock_list.index[start:end], start, end, result))
threads.append(t)
t.start()
# 等待所有线程执行完毕
for t in threads:
t.join()
# 计算最终结果
count = sum(result)
print('最近三个月每日不低于开盘价3%的股票数量为:', count)
```
注:以上代码仅供参考,实际使用时需要根据自己的需求进行修改。
阅读全文