我有一个来自十个类别各100个共1000个的信号数据,每个数据有512个特征点,存储为(1000,512)的tensor张量,现在我想将其输入一个最新的CNN网络训练分类模型用于分类这些类别,请使用pytorch实现
时间: 2024-05-10 18:21:19 浏览: 168
以下是一个基本的PyTorch实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型结构
class SignalNet(nn.Module):
def __init__(self):
super(SignalNet, self).__init__()
self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3)
self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3)
self.pool = nn.MaxPool1d(kernel_size=2)
self.fc1 = nn.Linear(in_features=32*126, out_features=128)
self.fc2 = nn.Linear(in_features=128, out_features=10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = torch.flatten(x, start_dim=1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 创建模型实例和优化器
model = SignalNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义损失函数和训练循环
criterion = nn.CrossEntropyLoss()
def train(model, optimizer, criterion, data_loader, num_epochs):
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(data_loader, 0):
inputs, labels = data
inputs = inputs.unsqueeze(1)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, loss: {running_loss/len(data_loader)}")
# 加载数据并进行训练
train_dataset = torch.utils.data.TensorDataset(signal_data, label_data)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
train(model, optimizer, criterion, train_loader, num_epochs=10)
```
在上面的代码中,我们定义了一个包含两个卷积层和两个全连接层的CNN模型,并使用Adam优化器进行训练。我们使用交叉熵损失函数来计算分类损失,并使用PyTorch的DataLoader将数据转换为批处理。在训练循环中,我们使用了反向传播和优化器来更新模型参数,并输出每个epoch的平均损失。
阅读全文