行驶里程限制的VRP--车辆路径问题
时间: 2023-10-02 07:04:03 浏览: 235
行驶里程限制的VRP(Vehicle Routing Problem)是一类经典的车辆路径问题,它的目标是在满足一定的约束条件下,找到一组最优的路径方案,使得所有的需求点被服务且总的行驶里程最小。其中,行驶里程限制是指每一辆车都有一个行驶里程上限,不能超过这个限制。
在行驶里程限制的VRP中,需要考虑以下几个方面:
1. 车辆的数量和容量:需要确定需要多少辆车才能满足所有的需求点,并且每辆车的容量不能超过规定的上限。
2. 需求点:需要确定需要服务的需求点,并且每个需求点有一个对应的需求量,需要满足其需求。
3. 路线:需要确定每辆车的路线,使得所有的需求点都被服务。
4. 行驶里程限制:需要保证每辆车的行驶里程不超过规定的上限。
解决行驶里程限制的VRP问题的常见算法包括贪心算法、分支定界法、遗传算法等。这些算法可以通过对问题的建模和求解来得到最优的路径方案。
相关问题
假定配送中心最多可以用2辆车对8个客户进行运输配送。每个车辆载重均为8吨,车辆每次配送的最大行驶距离为50km,配送中心(编号0)与8个客户之间及8个客户相互之间的距离dij(i, j = 1, 2, , 8)、8个客户的货物需求rj(j = 1, 2, , 8)。要求寻找一条路径,使得配送总里程最短。粒子群优化算法(PSO)求解车辆路径问题(VRP)的C++代码
以下是一个简单的粒子群优化算法(PSO)求解车辆路径问题(VRP)的C++代码,可以用于解决您提出的问题。请注意,这只是一个示例代码,实际应用中需要根据具体情况进行修改和优化。
```c++
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <ctime>
using namespace std;
const int N = 8; // 客户个数
const int V = 8; // 车辆载重
const int K = 2; // 车辆数
const int MAX_DIS = 50; // 车辆每次配送的最大行驶距离
struct Customer {
int id; // 客户编号
int demand; // 客户需求量
double x, y; // 客户坐标
};
struct Particle {
vector<int> path; // 路径序列
double fitness; // 适应度值
vector<double> velocity; // 粒子速度
vector<int> pbest; // 个体最优解
double pbest_fitness; // 个体最优解的适应度值
};
vector<Customer> customers(N + 1); // 客户数组,下标从1开始
vector<vector<double>> distance(N + 1, vector<double>(N + 1)); // 距离矩阵,下标从1开始
vector<Particle> particles; // 粒子群
vector<int> gbest; // 全局最优解
double gbest_fitness = 1e9; // 全局最优解的适应度值
// 计算两个客户之间的距离
double calc_distance(Customer& a, Customer& b) {
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}
// 计算路径总长度
double calc_path_length(vector<int>& path) {
double len = 0;
for (int i = 0; i < path.size() - 1; i++) {
len += distance[path[i]][path[i + 1]];
}
return len;
}
// 计算车辆行驶距离
double calc_vehicle_distance(vector<int>& path) {
double len = 0;
int cur_vehicle = 1;
int cur_capacity = 0;
for (int i = 0; i < path.size() - 1; i++) {
cur_capacity += customers[path[i]].demand;
if (cur_capacity > V || len + distance[path[i]][path[i + 1]] > MAX_DIS) {
cur_vehicle++;
cur_capacity = customers[path[i]].demand;
len = 0;
}
len += distance[path[i]][path[i + 1]];
}
return cur_vehicle <= K ? len : 1e9;
}
// 初始化粒子
void init_particle(Particle& p) {
vector<int> path(N + 1);
for (int i = 1; i <= N; i++) {
path[i] = i;
}
random_shuffle(path.begin() + 1, path.end());
p.path = path;
p.fitness = calc_path_length(p.path);
p.velocity.resize(N + 1);
for (int i = 1; i <= N; i++) {
p.velocity[i] = rand() / double(RAND_MAX);
}
p.pbest = p.path;
p.pbest_fitness = p.fitness;
if (p.fitness < gbest_fitness) {
gbest = p.path;
gbest_fitness = p.fitness;
}
}
// 粒子群初始化
void init_particles() {
particles.resize(100);
for (int i = 0; i < particles.size(); i++) {
init_particle(particles[i]);
}
}
// 更新粒子速度
void update_velocity(Particle& p) {
const double c1 = 2.0, c2 = 2.0; // 加速因子
const double w = 0.6; // 惯性因子
for (int i = 1; i <= N; i++) {
double r1 = rand() / double(RAND_MAX);
double r2 = rand() / double(RAND_MAX);
p.velocity[i] = w * p.velocity[i] + c1 * r1 * (p.pbest[i] - p.path[i]) + c2 * r2 * (gbest[i] - p.path[i]);
if (p.velocity[i] < 0) {
p.velocity[i] = 0;
}
if (p.velocity[i] > 1) {
p.velocity[i] = 1;
}
}
}
// 更新粒子位置
void update_position(Particle& p) {
vector<int> new_path = p.path;
sort(new_path.begin() + 1, new_path.end(), [&p](int a, int b) {
return p.velocity[a] > p.velocity[b];
});
double new_fitness = calc_path_length(new_path);
double new_vehicle_distance = calc_vehicle_distance(new_path);
if (new_fitness < p.fitness && new_vehicle_distance != 1e9) {
p.path = new_path;
p.fitness = new_fitness;
}
if (p.fitness < p.pbest_fitness) {
p.pbest = p.path;
p.pbest_fitness = p.fitness;
}
if (p.fitness < gbest_fitness) {
gbest = p.path;
gbest_fitness = p.fitness;
}
}
// 粒子群迭代
void pso() {
const int MAX_ITER = 1000;
for (int iter = 0; iter < MAX_ITER; iter++) {
for (int i = 0; i < particles.size(); i++) {
update_velocity(particles[i]);
update_position(particles[i]);
}
}
}
int main() {
srand(time(nullptr));
// 初始化客户数组和距离矩阵
for (int i = 1; i <= N; i++) {
customers[i].id = i;
cin >> customers[i].demand >> customers[i].x >> customers[i].y;
for (int j = 1; j <= i; j++) {
distance[i][j] = distance[j][i] = calc_distance(customers[i], customers[j]);
}
}
// 初始化粒子群
init_particles();
// 粒子群优化
pso();
// 输出结果
cout << "最短路径长度:" << gbest_fitness << endl;
cout << "最短路径:";
for (int i = 0; i < gbest.size(); i++) {
cout << gbest[i] << " ";
}
cout << endl;
return 0;
}
```
阅读全文