matlab unet图像分割代码
时间: 2023-08-27 22:05:01 浏览: 116
图像分割的matlab代码
以下是一个简单的 MATLAB UNet 图像分割代码示例:
```matlab
%% 数据准备
imds = imageDatastore('path_to_images');
pxds = pixelLabelDatastore('path_to_labels', classes);
%% 定义 UNet 模型
inputSize = [256 256 3];
numClasses = numel(classes);
layers = [
imageInputLayer(inputSize)
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 256, 'Padding', 'same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2, 'Stride', 2)
convolution2dLayer(3, 512, 'Padding', 'same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(2, 512, 'Stride', 2, 'Cropping', 'same')
concatenationLayer(3)
convolution2dLayer(3, 256, 'Padding', 'same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(2, 256, 'Stride', 2, 'Cropping', 'same')
concatenationLayer(3)
convolution2dLayer(3, 128, 'Padding', 'same')
batchNormalizationLayer
reluLayer
transposedConv2dLayer(2, 128, 'Stride', 2, 'Cropping', 'same')
concatenationLayer(3)
convolution2dLayer(3, 64, 'Padding', 'same')
batchNormalizationLayer
reluLayer
convolution2dLayer(3, numClasses, 'Padding', 'same')
softmaxLayer
pixelClassificationLayer
];
%% 训练模型
opts = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'MiniBatchSize', 8, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {imds_val, pxds_val}, ...
'ValidationFrequency', 10, ...
'Verbose', true, ...
'Plots', 'training-progress');
trainedNet = trainNetwork(imds, pxds, layers, opts);
%% 对测试集进行预测
im_test = imread('path_to_test_image');
im_test_resized = imresize(im_test, [256 256]);
im_test_resized = double(im_test_resized)/255;
pred = semanticseg(im_test_resized, trainedNet);
imshow(im_test_resized)
imshow(label2rgb(pred))
```
请注意,此示例代码仅用于说明如何使用 MATLAB 实现 UNet 模型进行图像分割。实际上,您需要根据您的数据集和任务进行修改和调整。
阅读全文