手术排程问题:有20个手术间,有40种术式,10个医疗组,已知各医疗组开展相应术式的平均时间,目标函数为:最大化手术室黄金时间利用率并且最小化手术间用时标准差;提供启发式算法python具体代码
时间: 2023-11-06 17:05:40 浏览: 73
提供了几种用于计算(EEG)时间序列复杂度的高效算法_python_代码_下载
这是一个比较复杂的排程问题,需要考虑到多个因素。以下是一个基于遗传算法的启发式算法的 Python 代码实现:
```python
import random
import numpy as np
# 定义问题参数
num_surgeries = 40 # 手术数量
num_rooms = 20 # 手术间数量
num_teams = 10 # 医疗组数量
time_matrix = np.random.rand(num_surgeries, num_teams) # 医疗组开展相应术式的平均时间矩阵
# 定义遗传算法参数
population_size = 100 # 种群大小
mutation_rate = 0.1 # 变异率
crossover_rate = 0.8 # 交叉率
generations = 100 # 迭代次数
# 初始化种群
def init_population():
population = []
for i in range(population_size):
chromosome = np.random.permutation(num_surgeries)
population.append(chromosome)
return population
# 评估适应度
def evaluate_fitness(chromosome):
# 计算手术间用时标准差
times = np.zeros(num_rooms)
for i in range(num_surgeries):
room = np.argmin(times)
times[room] += time_matrix[chromosome[i], room]
std_dev = np.std(times)
# 计算黄金时间利用率
avg_time = np.mean(time_matrix)
utilization = np.sum(time_matrix[chromosome]) / (num_rooms * avg_time)
# 综合考虑
fitness = utilization / std_dev
return fitness
# 选择父代
def select_parents(population):
fitnesses = [evaluate_fitness(chromosome) for chromosome in population]
total_fitness = sum(fitnesses)
probabilities = [fitness / total_fitness for fitness in fitnesses]
parents = np.random.choice(population, size=2, p=probabilities, replace=False)
return parents
# 单点交叉
def single_point_crossover(parents):
crossover_point = random.randint(1, num_surgeries - 1)
child1 = np.concatenate((parents[0][:crossover_point], parents[1][crossover_point:]))
child2 = np.concatenate((parents[1][:crossover_point], parents[0][crossover_point:]))
return child1, child2
# 变异
def mutate(chromosome):
if random.random() < mutation_rate:
index1, index2 = random.sample(range(num_surgeries), 2)
chromosome[index1], chromosome[index2] = chromosome[index2], chromosome[index1]
return chromosome
# 遗传算法主函数
def genetic_algorithm():
population = init_population()
for generation in range(generations):
# 选择父代并产生子代
new_population = []
for i in range(population_size // 2):
parents = select_parents(population)
if random.random() < crossover_rate:
child1, child2 = single_point_crossover(parents)
child1 = mutate(child1)
child2 = mutate(child2)
new_population.append(child1)
new_population.append(child2)
# 选择下一代种群
population = new_population
# 返回最优解
fitnesses = [evaluate_fitness(chromosome) for chromosome in population]
best_index = np.argmax(fitnesses)
return population[best_index]
```
这段代码中,我们定义了一个 `genetic_algorithm` 函数作为遗传算法的主函数,其中包括了种群初始化、适应度评估、父代选择、交叉、变异等步骤。在每一代种群中,我们选择父代并产生子代,然后通过遗传算法的操作来生成下一代种群。最后,我们返回最优解作为排程结果。
需要注意的是,这里的适应度函数考虑了两个因素:最大化手术室黄金时间利用率并且最小化手术间用时标准差。我们通过综合考虑这两个因素来评估每个染色体的适应度,并选择适应度最高的染色体作为最优解。
阅读全文