基于paddlepaddle框架采用神经网络(BP或者CNN)分类CIFAR10数据集
时间: 2023-08-17 11:26:59 浏览: 97
毕业设计:基于python+卷积神经网络(CNN)和CIFAR10数据集的图像智能分类 Web 应用.zip
好的,我可以为您解答这个问题。基于PaddlePaddle框架,可以使用神经网络(如BP或CNN)对CIFAR10数据集进行分类。下面是一个使用PaddlePaddle框架分类CIFAR10数据集的简单示例。
首先,您需要导入所需的库:
```python
import paddle
import paddle.fluid as fluid
import numpy as np
import os
```
然后,您需要定义一个函数来加载CIFAR10数据集:
```python
def load_data(mode='train'):
# 读取数据
data_dir = './cifar-10-batches-py'
if mode == 'train':
data_files = [os.path.join(data_dir, 'data_batch_%d' % i) for i in range(1, 6)]
elif mode == 'test':
data_files = [os.path.join(data_dir, 'test_batch')]
else:
raise Exception("Invalid mode: %s" % mode)
data = []
labels = []
for file in data_files:
with open(file, 'rb') as f:
data_dict = pickle.load(f, encoding='bytes')
data.append(data_dict[b'data'])
labels.append(data_dict[b'labels'])
data = np.concatenate(data)
labels = np.concatenate(labels)
return data, labels
```
接下来,您需要定义一个CNN模型:
```python
def cnn_model(image):
# 第一层卷积
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=image,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act='relu')
# 第二层卷积
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act='relu')
# 第三层全连接
fc = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return fc
```
然后,您需要定义一个训练函数:
```python
def train_cnn():
# 定义输入输出
image = fluid.layers.data(name='image', shape=[3, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# 定义模型
cnn = cnn_model(image)
# 定义损失函数和优化器
cross_entropy = fluid.layers.cross_entropy(input=cnn, label=label)
avg_loss = fluid.layers.mean(cross_entropy)
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
optimizer.minimize(avg_loss)
# 定义训练器
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# 加载数据
train_data, train_labels = load_data(mode='train')
# 开始训练
for epoch in range(10):
for batch_id, data in enumerate(batch_reader(train_data, train_labels, batch_size=128)):
img_data, lbl_data = data
img_data = img_data.reshape([-1, 3, 32, 32])
loss = exe.run(
feed={'image': img_data,
'label': lbl_data},
fetch_list=[avg_loss])
print("Epoch %d, Batch %d, Loss %f" % (epoch, batch_id, loss[0]))
```
最后,您可以运行训练函数来开始训练模型:
```python
train_cnn()
```
这就是一个使用PaddlePaddle框架进行CIFAR10分类的简单示例。当然,您还可以根据具体需求进行调整和优化。
阅读全文