dht11温湿度传感器stm32f4

时间: 2023-04-26 15:01:36 浏览: 209
dht11温湿度传感器是一种常用的传感器,可以测量环境的温度和湿度。在stm32f4上使用dht11传感器,需要连接传感器的数据线到stm32f4的GPIO口,并编写相应的程序来读取传感器的数据。可以使用STM32CubeMX来配置GPIO口和定时器,然后使用HAL库来编写程序。具体的实现方法可以参考相关的资料和示例代码。
相关问题

dht11温湿度传感器stm32 hal库

### 回答1: DHT11温湿度传感器是一种数字式传感器,它可以测量环境的温度和相对湿度。在STM32中使用HAL库读取DHT11传感器数据的步骤如下: 1.配置引脚 DHT11传感器有一个数据引脚,将其连接到STM32的GPIO引脚。然后使用HAL库初始化GPIO引脚。 2.发送起始信号 向DHT11传感器发送起始信号,该信号包括一个50微秒的低电平和一个20微秒的高电平。 3.接收数据 DHT11传感器将发送40位数据,其中包括16位湿度数据、16位温度数据和8位校验和。在接收数据期间,STM32将读取引脚状态并将其转换为二进制数据。 4.解码数据 将接收到的数据解码为湿度和温度值,并验证校验和以确保数据的正确性。 以下是一个示例代码,演示如何使用HAL库读取DHT11传感器数据: ```c #include "stm32f4xx_hal.h" #define DHT11_PIN GPIO_PIN_0 #define DHT11_PORT GPIOA uint8_t data[5]; void DHT11_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(DHT11_PORT, DHT11_PIN, GPIO_PIN_RESET); /*Configure GPIO pin as output */ GPIO_InitStruct.Pin = DHT11_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(DHT11_PORT, &GPIO_InitStruct); } void DHT11_Start(void) { /* set pin to output */ GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.Pin = DHT11_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(DHT11_PORT, &GPIO_InitStruct); /* send start signal */ HAL_GPIO_WritePin(DHT11_PORT, DHT11_PIN, GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(DHT11_PORT, DHT11_PIN, GPIO_PIN_SET); HAL_Delay(20); /* set pin to input */ GPIO_InitStruct.Pin = DHT11_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(DHT11_PORT, &GPIO_InitStruct); } uint8_t DHT11_Check_Response(void) { uint8_t response = 0; uint16_t timeout = 10000; while (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN) == GPIO_PIN_RESET) { if (--timeout == 0) { return 0; } } timeout = 10000; while (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN) == GPIO_PIN_SET) { if (--timeout == 0) { return 0; } } return 1; } uint8_t DHT11_Read_Byte(void) { uint8_t value = 0; for (int i = 0; i < 8; i++) { while (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN) == GPIO_PIN_RESET) ; HAL_Delay(40); if (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN) == GPIO_PIN_SET) { value |= (1 << (7 - i)); } while (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN) == GPIO_PIN_SET) ; } return value; } void DHT11_Read_Data(void) { uint8_t checksum = 0; DHT11_Start(); if (DHT11_Check_Response()) { data[0] = DHT11_Read_Byte(); data[1] = DHT11_Read_Byte(); data[2] = DHT11_Read_Byte(); data[3] = DHT11_Read_Byte(); checksum = DHT11_Read_Byte(); if (checksum == (data[0] + data[1] + data[2] + data[3])) { /* data is valid */ } else { /* data is invalid */ } } else { /* no response from DHT11 */ } } ``` 在上面的代码中,DHT11_Init()函数用于初始化引脚,DHT11_Start()函数用于发送起始信号,DHT11_Check_Response()函数用于检查传感器是否响应,DHT11_Read_Byte()函数用于读取8位数据,DHT11_Read_Data()函数用于读取40位数据并验证校验和。 ### 回答2: DHT11温湿度传感器是一种常用的数字温湿度传感器,适用于STM32单片机。STM32 HAL库是STM32官方提供的一种软件库,用于简化STM32单片机的开发过程。 使用DHT11温湿度传感器需要先连接好硬件电路,将传感器的引脚与STM32单片机的引脚相连接,并给传感器提供电源。然后在STM32单片机上编写程序,调用HAL库中提供的相关函数,即可读取传感器的温湿度数据。 首先,在程序中需要定义一个GPIO引脚和一个变量,用于存储传感器读取到的数据。然后使用HAL库中的相关函数,对GPIO引脚进行配置,以及初始化DHT11传感器。 接下来,使用HAL库中的延时函数,延时一段时间,让传感器完成数据采集。然后调用HAL库中的函数,读取传感器的数据,并将数据存入之前定义的变量中。 最后,通过串口等方式,将读取到的温湿度数据进行显示或者传输。 需要注意的是,使用DHT11传感器时,其通讯采用的是一种简单的串行通信协议,需要根据协议要求对传感器进行初始化和数据读取。 总的来说,通过使用STM32 HAL库,我们可以方便地读取DHT11温湿度传感器的数据,并在STM32单片机上进行后续的处理和应用。 ### 回答3: DHT11温湿度传感器是一种常用的数字式传感器,可以测量当前环境的温度和湿度。STM32是一种微控制器,它可以通过HAL库来与不同的外设进行通信和控制。 在使用DHT11温湿度传感器时,首先需要将其与STM32连接。使用HAL库的GPIO模块,可以根据DHT11的引脚定义连接到STM32的相应引脚上。例如,将DHT11的数据引脚连接到STM32的GPIO引脚上,以实现数据的输入和输出。 通过HAL库的定时器模块,可以在STM32中设置适当的时间间隔来进行数据的采集。DHT11温湿度传感器的数据采集需要一定的时间,通过定时器的设置,可以保证数据的稳定性和准确性。在采集数据之后,可以使用HAL库的串口模块,将数据发送到计算机或其他设备进行处理和显示。 在HAL库的使用过程中,可以根据需要修改一些参数,例如数据采集的频率、传输数据的格式等。通过仔细阅读HAL库的开发文档和示例代码,可以更好地理解和掌握DHT11温湿度传感器在STM32中的使用方法。 总之,DHT11温湿度传感器可以通过STM32的HAL库进行连接和控制。通过合理的设置和使用,可以方便地获取当前环境的温度和湿度数据,并且可以根据需求进行相应的处理和显示。

编写dht11温湿度传感器的stm32程序

以下是使用STM32的HAL库编写DHT11温湿度传感器程序的示例代码: ```c #include "stm32f4xx_hal.h" #define DHT11_PORT GPIOA #define DHT11_PIN GPIO_PIN_0 TIM_HandleTypeDef htim2; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_TIM2_Init(); while (1) { // 等待 1s HAL_Delay(1000); // 发送开始信号 HAL_GPIO_WritePin(DHT11_PORT, DHT11_PIN, GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(DHT11_PORT, DHT11_PIN, GPIO_PIN_SET); HAL_Delay(30); // 接收数据 uint8_t buffer[5] = {0}; uint8_t bit_count = 0; uint8_t byte_count = 0; uint8_t data = 0; for (int i = 0; i < 40; i++) { // 等待下一位数据的到来 while (!HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN)); // 计时,以确定数据位是 0 还是 1 TIM2->CNT = 0; while (HAL_GPIO_ReadPin(DHT11_PORT, DHT11_PIN)); uint16_t time = TIM2->CNT; if (time > 40) { // 数据位为 1 data |= (uint8_t)(1 << (7 - bit_count)); } bit_count++; if (bit_count == 8) { buffer[byte_count] = data; byte_count++; data = 0; bit_count = 0; } } // 验证校验和 if (buffer[4] == (buffer[0] + buffer[1] + buffer[2] + buffer[3])) { // 计算温度和湿度 uint16_t humidity = ((uint16_t)buffer[0] << 8) | buffer[1]; uint16_t temperature = ((uint16_t)buffer[2] << 8) | buffer[3]; // 输出温度和湿度 float h = (float)humidity / 10.0f; float t = (float)temperature / 10.0f; printf("Humidity: %.1f%% Temperature: %.1fC\r\n", h, t); } else { printf("Checksum error!\r\n"); } } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = DHT11_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(DHT11_PORT, &GPIO_InitStruct); } static void MX_TIM2_Init(void) { TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; __HAL_RCC_TIM2_CLK_ENABLE(); htim2.Instance = TIM2; htim2.Init.Prescaler = 100 - 1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 65535; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } } ``` 请注意,此代码仅供参考,您应该根据您的具体硬件和需求进行修改。在编写自己的程序之前,请确保您已经正确地连接了DHT11传感器。

相关推荐

#include "led.h" #include "delay.h" #include "key.h" #include "sys.h" #include "lcd.h" #include "usart.h" #include "dht11.h" uint32_t length; // 存储距离的变量 float leng; // 存储距离的变量(浮点数) u8 temp,humi; // 存储温度和湿度的变量 u8 bufe[5]; int main(void) { u8 x=0; u32 lcd_id[12]; //存放LCD ID字符串 delay_init(); //延时函数初始化 //NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //设置NVIC中断分组2:2位抢占优先级,2位响应优先级 uart_init(115200); //串口初始化为115200 LED_Init(); //LED端口初始化 LCD_Init(); POINT_COLOR=RED; sprintf((char*)lcd_id,"LCD ID:%04X",lcddev.id);//将LCD ID打印到lcd_id数组。 while(1) { // // leng = Hcsr04GetLength(); // 获取距离 DHT11_Read_Data(&temp,&humi); // 获取温湿度数据 bufe[0] = temp; // 保存温度数据 bufe[1] = humi; // 保存湿度数据 bufe[2] = 45; // 保存固定值 length = leng * 100; // 将距离转换为整型 POINT_COLOR=RED; LCD_ShowString(30,70,200,16,16,"wen:"); LCD_ShowString(30,90,200,16,16,"shi:"); LCD_ShowString(30,110,200,16,16,"length/1000"); LCD_ShowString(30,130,200,16,16,"length%1000/100"); LCD_ShowString(170,130,210,16,16,":"); LCD_ShowString(30,170,200,16,16,"length%100/10"); LCD_ShowString(30,190,200,16,16,"length%10/1"); LCD_ShowxNum(60,70,bufe[0],4,16,1); LCD_ShowString(100,70,200,16,16,"C"); LCD_ShowxNum(60,90,bufe[1],4,16,1); LCD_ShowString(100,90,200,16,16,"%"); x++; if(x==12)x=0; LED0=!LED0; delay_ms(1000); } }加注释

最新推荐

神经网络与量子计算的交叉研究.pptx

神经网络与量子计算的交叉研究.pptx

非线性端口 MEMS 麦克风的 Simscape 模型.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

用于超声成像和仿真的 MATLAB 工具箱.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

HFI高频注入仿真—matlab.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。

北京工商大学上网登陆版源码.zip

android 源码学习. 资料部分来源于合法的互联网渠道收集和整理,供大家学习参考与交流。本人不对所涉及的版权问题或内容负法律责任。如有侵权,请通知本人删除。感谢CSDN官方提供大家交流的平台

2023年中国辣条食品行业创新及消费需求洞察报告.pptx

随着时间的推移,中国辣条食品行业在2023年迎来了新的发展机遇和挑战。根据《2023年中国辣条食品行业创新及消费需求洞察报告》,辣条食品作为一种以面粉、豆类、薯类等原料为基础,添加辣椒、调味料等辅料制成的食品,在中国市场拥有着广阔的消费群体和市场潜力。 在行业概述部分,报告首先介绍了辣条食品的定义和分类,强调了辣条食品的多样性和口味特点,满足消费者不同的口味需求。随后,报告回顾了辣条食品行业的发展历程,指出其经历了从传统手工制作到现代化机械生产的转变,市场规模不断扩大,产品种类也不断增加。报告还指出,随着消费者对健康饮食的关注增加,辣条食品行业也开始向健康、营养的方向发展,倡导绿色、有机的生产方式。 在行业创新洞察部分,报告介绍了辣条食品行业的创新趋势和发展动向。报告指出,随着科技的不断进步,辣条食品行业在生产工艺、包装设计、营销方式等方面都出现了新的创新,提升了产品的品质和竞争力。同时,报告还分析了未来可能出现的新产品和新技术,为行业发展提供了新的思路和机遇。 消费需求洞察部分则重点关注了消费者对辣条食品的需求和偏好。报告通过调查和分析发现,消费者在选择辣条食品时更加注重健康、营养、口味的多样性,对产品的品质和安全性提出了更高的要求。因此,未来行业需要加强产品研发和品牌建设,提高产品的营养价值和口感体验,以满足消费者不断升级的需求。 在市场竞争格局部分,报告对行业内主要企业的市场地位、产品销量、市场份额等进行了分析比较。报告发现,中国辣条食品行业竞争激烈,主要企业之间存在着激烈的价格战和营销竞争,产品同质化严重。因此,企业需要加强品牌建设,提升产品品质,寻求差异化竞争的突破口。 最后,在行业发展趋势与展望部分,报告对未来辣条食品行业的发展趋势进行了展望和预测。报告认为,随着消费者对健康、有机食品的需求增加,辣条食品行业将进一步向健康、营养、绿色的方向发展,加强与农业合作,推动产业升级。同时,随着科技的不断进步,辣条食品行业还将迎来更多的创新和发展机遇,为行业的持续发展注入新的动力。 综上所述,《2023年中国辣条食品行业创新及消费需求洞察报告》全面深入地分析了中国辣条食品行业的发展现状、创新动向和消费需求,为行业的未来发展提供了重要的参考和借鉴。随着消费者消费观念的不断升级和科技的持续发展,中国辣条食品行业有望迎来更加广阔的发展空间,实现可持续发展和行业繁荣。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

学习率衰减策略及调参技巧:在CNN中的精准应用指南

# 1. 学习率衰减策略概述 学习率衰减是深度学习中常用的优化技巧,旨在调整模型训练时的学习率,以提高模型性能和收敛速度。在训练迭代过程中,通过逐步减小学习率的数值,模型在接近收敛时可以更精细地调整参数,避免在局部最优点处震荡。学习率衰减策略种类繁多,包括固定衰减率、指数衰减、阶梯衰减和余弦衰减等,每种方法都有适用的场景和优势。掌握不同学习率衰减策略,可以帮助深度学习从业者更好地训练和调优模型。 # 2. 深入理解学习率衰减 学习率衰减在深度学习中扮演着重要的角色,能够帮助模型更快地收敛,并提高训练效率和泛化能力。在本章节中,我们将深入理解学习率衰减的基本概念、原理以及常见方法。 ##

如何让restTemplate call到一个mock的数据

要使用 `RestTemplate` 调用一个模拟的数据,你可以使用 `MockRestServiceServer` 类来模拟服务端的响应。下面是一个示例代码: ```java import org.springframework.http.HttpMethod; import org.springframework.http.HttpStatus; import org.springframework.http.MediaType; import org.springframework.http.ResponseEntity; import org.springframework.test

2023年半导体行业20强品牌.pptx

2023年半导体行业20强品牌汇报人文小库于2024年1月10日提交了《2023年半导体行业20强品牌》的报告,报告内容主要包括品牌概述、产品线分析、技术创新、市场趋势和品牌策略。根据报告显示的数据和分析,可以看出各品牌在半导体行业中的综合实力和发展情况。 在品牌概述部分,文小库对2023年半导体行业20强品牌进行了排名,主要根据市场份额、技术创新能力和品牌知名度等多个指标进行评估。通过综合评估,得出了各品牌在半导体行业中的排名,并分析了各品牌的市场份额变化情况,了解了各品牌在市场中的竞争态势和发展趋势。此外,还对各品牌的品牌影响力进行了分析,包括对行业发展的推动作用和对消费者的影响力等方面进行评估,从品牌知名度和品牌价值两个维度来评判各品牌的实力。 在产品线分析部分,报告详细描述了微处理器在半导体行业中的核心地位,这是主要应用于计算机、手机、平板等智能终端设备中的关键产品。通过对产品线进行详细分析,可以了解各品牌在半导体领域中的产品布局和市场表现,为后续的市场策略制定提供了重要的参考信息。 在技术创新方面,报告也对各品牌在技术创新方面的表现进行了评估,这是半导体行业发展的关键驱动力之一。通过分析各品牌在技术研发、产品设计和生产制造等方面的创新能力,可以评判各品牌在未来发展中的竞争优势和潜力,为品牌策略的制定提供重要依据。 在市场趋势和品牌策略方面,报告分析了半导体行业的发展趋势和竞争格局,为各品牌制定市场策略和品牌推广提供了重要参考。针对未来市场发展的趋势,各品牌需要不断加强技术创新、提升品牌影响力,以及制定有效的市场推广策略,来保持在行业中的竞争优势。 综上所述,在2023年半导体行业20强品牌报告中,通过对各品牌的综合排名、产品线分析、技术创新、市场趋势和品牌策略等方面的评估和分析,展现了各品牌在半导体行业中的实力和发展状态,为半导体行业的未来发展提供了重要的参考和指导。