dataset = tf.data.Dataset.from_tensor_slices({ 'pixels': x_train.reshape(-1, 28 * 28), 'label': y_train }) dataset = dataset.batch(batch_size=32)如何使得每次输入的数据随机
时间: 2023-06-07 15:11:37 浏览: 200
化?
可以使用shuffle()函数来进行打乱数据集,具体操作如下:
dataset = tf.data.Dataset.from_tensor_slices({
'pixels': x_train.reshape(-1, 28 * 28),
'label': y_train
})
dataset = dataset.shuffle(buffer_size=len(x_train))
dataset = dataset.batch(batch_size=32)
其中,shuffle()函数的buffer_size参数表示打乱数据集时缓存的大小,建议设置为数据集大小相等。这样每次遍历训练集时,输入的数据都是随机化的。
相关问题
arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr1, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['month', 'sales']) sales = data['sales'].values.astype(np.float32) sales_mean = sales.mean() sales_std = sales.std() sales = abs(sales - sales_mean) / sales_std train_data = sales[:-1] test_data = sales[-12:] def create_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(11, 1))) model.add(layers.Conv1D(filters=32, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=64, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=128, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=256, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=512, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(1, activation='linear')) return model model = create_model() BATCH_SIZE = 16 BUFFER_SIZE = 100 train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.window(11, shift=1, drop_remainder=True) train_dataset = train_dataset.flat_map(lambda window: window.batch(11)) train_dataset = train_dataset.map(lambda window: (window[:-1], window[-1:])) train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(1) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') history = model.fit(train_dataset, epochs=100, verbose=0) test_input = test_data[:-1] test_input = np.reshape(test_input, (1, 11, 1)) predicted_sales = model.predict(test_input)[0][0] * sales_std + sales_mean test_prediction = model.predict(test_input) y_test=test_data[1:12] y_pred=test_prediction y_pred = test_prediction.ravel() print("预测下一个月的销量为:", predicted_sales),如何将以下代码稍作修改插入到上面的最后,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")
你可以在最后添加如下代码实现 `comput_acc()` 函数的功能:
```
label = 0 # 定义标签
a = np.array(test_data[label]) # 获取测试数据的标签列
real_y = a[1:] # 实际销售数据
real_predict = y_pred[:-1] # 预测销售数据
print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%")
```
这段代码的作用是,首先定义标签为 0,即选取测试数据中的第一列数据(即销售数据)。然后,使用 `np.array()` 函数将该列数据转换为 numpy 数组 `a`。接着,将 `a` 中的第二个元素到最后一个元素赋值给 `real_y`,这里是因为真实销售数据的第一个元素已经作为测试数据输入了模型,所以预测值中不包含该元素。然后,将 `y_pred` 中的第一个元素到倒数第二个元素赋值给 `real_predict`,这是因为预测值中的最后一个元素已经与真实值的最后一个元素相对应。最后,调用 `comput_acc()` 函数计算预测准确率,并将结果打印输出。
怎么加快这段代码的运行速度num_samples = x_data.shape[0] features = tf.Variable(initial_value=tf.zeros((1, 0)), dtype=tf.float32) batch_size = 32 for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) features = tf.concat([features, feature_batch], axis=1) else: feature_batch = model.predict(batch, batch_size=batch_size) features = tf.concat([features, feature_batch], axis=1) print(features.shape)
这段代码的运行速度可以通过以下几种方式进行优化:
1. 使用更快的模型:如果模型的计算速度较慢,可以尝试使用更快的模型,例如MobileNet、EfficientNet等。
2. 使用GPU加速:如果你的电脑有GPU,可以使用GPU加速模型的计算。可以使用`tf.config.experimental.set_memory_growth()`方法来设置GPU内存分配策略,以避免内存溢出问题。
3. 使用TensorFlow Dataset:TensorFlow Dataset是一种高效的数据输入管道,可以帮助提高训练速度。可以使用`tf.data.Dataset.from_tensor_slices()`方法来创建一个Dataset对象,然后使用`batch()`方法和`prefetch()`方法来设置批量大小和预取数据。
4. 使用更大的批量大小:如果你的电脑有足够的内存,可以尝试使用更大的批量大小,以提高训练速度。但是需要注意,批量大小过大可能会导致内存溢出问题。
5. 使用多线程预处理数据:如果你的电脑有多个CPU核心,可以使用多线程预处理数据,以加快数据处理速度。可以使用`tf.data.Dataset.map()`方法来定义一个数据预处理函数,并使用`num_parallel_calls`参数来设置线程数。
根据你的代码,可以使用方法1、2和4来进行优化,具体代码如下:
```python
# 方法1:使用更快的模型
from tensorflow.keras.applications import MobileNetV2
model = MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet')
# 方法2:使用GPU加速
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
tf.config.experimental.set_memory_growth(gpus[0], True)
except RuntimeError as e:
print(e)
# 方法4:使用更大的批量大小
batch_size = 64
# 修改后的代码
features = tf.Variable(initial_value=tf.zeros((1, 0)), dtype=tf.float32)
for i in range(0, num_samples, batch_size):
batch = x_data[i:i + batch_size]
batch = tf.expand_dims(batch, axis=0)
if i + batch_size > num_samples:
batch_num = num_samples - i
if batch_num == 1:
feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num)
else:
feature_batch = model.predict(batch, batch_size=batch_num)
features = tf.concat([features, feature_batch], axis=1)
else:
feature_batch = model.predict(batch, batch_size=batch_size)
features = tf.concat([features, feature_batch], axis=1)
print(features.shape)
```
希望这些方法能够帮助你加快代码的运行速度!
阅读全文