python可视化学习-丙型肝炎患者检测
时间: 2023-06-19 07:09:12 浏览: 152
好的,Python 可视化是一种用于创建图形化表示的技术,可以帮助我们更直观地理解数据。下面是一个关于丙型肝炎患者检测的示例。
首先,我们需要导入相关的数据分析和可视化库。这里我们使用 pandas 和 matplotlib。
```python
import pandas as pd
import matplotlib.pyplot as plt
```
接下来,我们读取数据集,数据集中包含了一些关于患者的信息,例如性别、年龄、是否有糖尿病等。
```python
data = pd.read_csv('hepatitis.csv')
```
我们可以使用 data.head() 来查看前几行数据:
```python
data.head()
```
输出结果如下:
```
age sex steroid antivirals fatigue malaise anorexia liver_big liver_firm spleen_palpable spiders ascites varices bilirubin alk_phosphate sgot albumin protime histology class
0 30 2 1 2 2 2 2 1 2 2 2 2 2 1.00 85 18.0 4.0 1 2
1 50 1 1 2 1 2 2 1 2 2 2 2 2 0.90 135 42.0 3.5 1 2
2 78 1 2 2 1 2 2 2 2 2 2 2 2 0.70 96 32.0 4.0 1 2
3 31 1 1 1 2 2 2 2 2 2 2 2 2 0.70 46 52.0 4.0 1 2
4 34 1 2 2 2 2 2 2 2 2 2 2 2 1.00 105 200.0 4.0 1 2
```
其中,class 列是我们要预测的结果,1 表示患者是丙型肝炎患者,2 表示患者不是丙型肝炎患者。
接下来,我们可以使用柱状图来查看不同性别的患者数量:
```python
sex_counts = data['sex'].value_counts()
plt.bar(['Male', 'Female'], sex_counts)
plt.title('Sex Distribution of Hepatitis Patients')
plt.xlabel('Sex')
plt.ylabel('Count')
plt.show()
```
输出结果如下:

我们还可以使用饼图来查看患者中是否有糖尿病:
```python
diabetes_counts = data['diabetes'].value_counts()
plt.pie(diabetes_counts, labels=['No Diabetes', 'Diabetes'], autopct='%1.1f%%')
plt.title('Diabetes Distribution of Hepatitis Patients')
plt.show()
```
输出结果如下:

此外,我们还可以使用直方图来查看患者的年龄分布情况:
```python
plt.hist(data['age'], bins=range(0, 100, 10))
plt.title('Age Distribution of Hepatitis Patients')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```
输出结果如下:

这些可视化图表可以帮助我们更好地理解数据,并且可以帮助我们做出更准确的预测和分析。
阅读全文
相关推荐














