编写pytorch代码,读取时序数据集dataset,首先将数据集通过滑动窗口划分法按照比例为0.7:0.2:0.1划分为训练集、验证集和测试集。然后将训练集划分开为特征和标签
时间: 2024-02-03 07:04:01 浏览: 85
好的,我可以为您提供一个简单的代码示例,您可以参考它来实现您的要求。代码如下:
```
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def sliding_window_split(data, window_size, train_ratio, val_ratio):
total_len = len(data)
train_len = int(total_len * train_ratio)
val_len = int(total_len * val_ratio)
test_len = total_len - train_len - val_len
train_data = data[:train_len]
val_data = data[train_len:train_len + val_len]
test_data = data[train_len + val_len:]
train_windows = []
train_labels = []
for i in range(train_len - window_size):
train_windows.append(train_data[i:i+window_size])
train_labels.append(train_data[i+window_size])
train_dataset = MyDataset(list(zip(train_windows, train_labels)))
val_windows = []
val_labels = []
for i in range(val_len - window_size):
val_windows.append(val_data[i:i+window_size])
val_labels.append(val_data[i+window_size])
val_dataset = MyDataset(list(zip(val_windows, val_labels)))
test_windows = []
test_labels = []
for i in range(test_len - window_size):
test_windows.append(test_data[i:i+window_size])
test_labels.append(test_data[i+window_size])
test_dataset = MyDataset(list(zip(test_windows, test_labels)))
return train_dataset, val_dataset, test_dataset
data = np.random.rand(1000)
window_size = 10
train_ratio = 0.7
val_ratio = 0.2
train_dataset, val_dataset, test_dataset = sliding_window_split(data, window_size, train_ratio, val_ratio)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
for batch_idx, (windows, labels) in enumerate(train_loader):
features = windows
targets = labels
# 在这里对训练集进行特征和标签的划分
# ...
```
这个代码示例的作用是将时序数据集通过滑动窗口划分法按照比例为0.7:0.2:0.1划分为训练集、验证集和测试集,并将训练集划分开为特征和标签。您可以根据您的实际需求进行修改。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)