sys.path.append(dir_path + '/../../python/openpose/Release');
时间: 2023-12-14 08:04:21 浏览: 123
This line of code adds the directory path '/../../python/openpose/Release' to the list of directories that Python searches for imported modules. This is useful if you have installed a module or package in a non-standard directory and want to be able to import it into your Python code without having to move it to a standard location. In this particular case, the directory path refers to the directory where the OpenPose library is installed, which is a popular computer vision library for body pose estimation.
相关问题
openpose python 调用摄像头
OpenPose是一个开源的人体姿态估计库,Python是一种流行的编程语言,可以用于OpenPose的编程。在Python中调用摄像头可以使用OpenCV库,该库非常方便地处理图像和视频的读取、显示和保存。使用OpenPose和OpenCV库,可以实现通过摄像头实时检测人体姿态的功能。
在Python中调用摄像头,首先需要安装OpenPose和OpenCV库。安装后,在代码中引入库,设置参数,打开摄像头并读取摄像头拍摄的图像,对图像进行姿态估计,然后把结果在屏幕上显示出来。具体步骤如下:
1. 导入库
import cv2
import time
import numpy as np
import argparse
import os
from sys import platform
try:
# Import Openpose (Windows/Ubuntu/OSX)
dir_path = os.path.dirname(os.path.realpath(__file__))
os.sys.path.append(dir_path + "/../python/openpose/Release");
from openpose import pyopenpose as op
except ImportError as e:
print(e)
sys.exit(-1)
2. 设置参数
params = dict()
params["model_folder"] = "../openpose/models/"
# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()
3. 打开摄像头并读取图像
cap = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = cap.read()
if not ret:
print("Error")
break
4. 对图像进行姿态估计
datum = op.Datum()
datum.cvInputData = frame
opWrapper.emplaceAndPop([datum])
5. 将结果在屏幕上显示出来
cv2.imshow("OpenPose", datum.cvOutputData)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
6. 释放资源并关闭窗口
cap.release()
cv2.destroyAllWindows()
以上就是使用OpenPose和OpenCV库在Python中调用摄像头,并实现实时检测人体姿态的简单步骤。需要注意的是,此处只是演示了基本的姿态估计,如果要进行更复杂的姿态估计,需要对代码进行更多的修改和优化。
openpose人体骨骼检测
OpenPose是一个基于深度学习的开源库,用于实时多人2D姿态估计。它可以检测人体的关键点,例如鼻子、眼睛、耳朵、肩膀、手肘、手腕、髋部、膝盖和脚踝等。以下是使用OpenPose进行人体骨骼检测的步骤:
1. 安装OpenPose库和依赖项。
2. 准备输入图像或视频。
3. 使用OpenPose库中的函数加载输入图像或视频。
4. 调用OpenPose库中的函数进行人体骨骼检测。
5. 处理检测结果并将其可视化。
以下是一个使用OpenPose进行人体骨骼检测的Python示例代码:
```python
import cv2
import os
import sys
import numpy as np
# 加载OpenPose库
dir_path = os.path.dirname(os.path.realpath(__file__))
try:
# Windows Import
if sys.platform == "win32":
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append(dir_path + '/../../python/openpose/Release');
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/../../x64/Release;' + dir_path + '/../../bin;'
import pyopenpose as op
else:
# Change these variables to point to the correct folder (Release/x64 etc.)
sys.path.append('../../python');
from openpose import pyopenpose as op
except ImportError as e:
print('Error: OpenPose library could not be found. Did you enable `BUILD_PYTHON` in CMake and have this Python script in the right folder?')
raise e
# 设置OpenPose参数
params = dict()
params["model_folder"] = "../../models/"
params["model_pose"] = "BODY_25"
params["net_resolution"] = "-1x368"
params["number_people_max"] = 1
# 加载图像
image_path = "test.jpg"
image = cv2.imread(image_path)
# 运行OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()
datum = op.Datum()
datum.cvInputData = image
opWrapper.emplaceAndPop([datum])
# 处理检测结果
keypoints = datum.poseKeypoints
for i in range(keypoints.shape[0]):
for j in range(keypoints.shape[1]):
cv2.circle(image, (int(keypoints[i][j][0]), int(keypoints[i][j][1])), 3, (0, 0, 255), -1)
# 可视化结果
cv2.imshow("OpenPose result", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
阅读全文