给出KANN-DBSCAN的python代码示例
时间: 2023-10-17 19:23:33 浏览: 159
DBSCAN算法的python可视化实现
以下是KANN-DBSCAN的Python代码示例:
```python
import numpy as np
from sklearn.neighbors import NearestNeighbors
class KANN_DBSCAN():
def __init__(self, eps=0.5, min_samples=5):
self.eps = eps
self.min_samples = min_samples
def fit(self, X):
self.N = len(X) # 数据点的数量
self.visited = np.zeros(self.N, dtype=bool) # 是否已经被访问过
self.labels = np.zeros(self.N, dtype=int) # 每个点的标签(即类别)
self.distances = NearestNeighbors().fit(X).kneighbors(X)[0] # 每个点到其它所有点的距离
self.c = 0 # 当前类别编号
for i in range(self.N):
if not self.visited[i]:
self.visited[i] = True
neighbors = self._region_query(i)
if len(neighbors) < self.min_samples:
self.labels[i] = -1 # 噪声点
else:
self._expand_cluster(i, neighbors)
return self.labels
def _region_query(self, i):
# 返回 i 的邻居(即到 i 距离小于 eps 的所有点的下标)
return np.where(self.distances[i] <= self.eps)[0]
def _expand_cluster(self, i, neighbors):
self.c += 1
self.labels[i] = self.c
j = 0
while j < len(neighbors):
k = neighbors[j]
if not self.visited[k]:
self.visited[k] = True
neighbors_k = self._region_query(k)
if len(neighbors_k) >= self.min_samples:
neighbors = np.concatenate([neighbors, neighbors_k])
if self.labels[k] == 0:
self.labels[k] = self.c
j += 1
```
希望这个代码示例对你有所帮助!
阅读全文