用R语言自编一个函数用于单因子方差分析
时间: 2023-07-24 22:20:42 浏览: 129
以下是用R语言自编的一个函数,用于单因子方差分析:
```R
one_way_anova <- function(data, group_var, response_var){
# data: 数据框
# group_var: 分组变量名
# response_var: 反应变量名
# 计算总平均值
grand_mean <- mean(data[[response_var]])
# 计算组内平均值
group_means <- aggregate(data[[response_var]], by=list(data[[group_var]]), mean)
names(group_means) <- c(group_var, "mean")
# 计算组内平均方差
group_vars <- aggregate(data[[response_var]], by=list(data[[group_var]]), var)
names(group_vars) <- c(group_var, "var")
# 计算组内平均方差的平均值
mean_within_group_vars <- mean(group_vars[["var"]])
# 计算组间平均方差
n_groups <- length(unique(data[[group_var]]))
group_sizes <- aggregate(data[[response_var]], by=list(data[[group_var]]), length)[,2]
group_sumsquares <- (group_sizes - 1) * group_vars[["var"]]
mean_between_group_vars <- sum(group_sumsquares) / (n_groups - 1)
# 计算F值和p值
f_value <- mean_between_group_vars / mean_within_group_vars
p_value <- pf(f_value, n_groups - 1, sum(group_sizes) - n_groups, lower.tail=FALSE)
# 输出结果
result <- list(grand_mean=grand_mean, group_means=group_means, group_vars=group_vars,
mean_within_group_vars=mean_within_group_vars, mean_between_group_vars=mean_between_group_vars,
f_value=f_value, p_value=p_value)
return(result)
}
```
使用该函数的示例代码如下:
```R
# 导入数据
data <- read.csv("data.csv")
# 运行单因子方差分析
result <- one_way_anova(data, "group", "value")
# 输出结果
print(result)
```
其中,data.csv是包含分组变量(group)和反应变量(value)的数据文件。
阅读全文
相关推荐
















