ge gfk-2222
时间: 2023-07-07 20:02:23 浏览: 170
GE GFK-2222是一种工业自动化控制系统中使用的设备。它是由GE(通用电气)公司设计和生产的,具有先进的功能和性能。
GE GFK-2222常被用于工厂和生产线的自动化控制中,能够监控和控制各种工艺和设备。它采用了最新的技术,包括先进的传感器和控制算法,确保了系统的高精度和可靠性。
GE GFK-2222提供了丰富的功能和扩展性,可以根据不同工艺的需求进行定制和配置。其可编程的控制平台可以根据用户需求进行编程,实现不同的控制策略和逻辑。
该设备具有直观的用户界面,使用起来方便快捷。它提供了实时的数据监测和报警功能,可以随时监测工艺参数并发出警报。此外,GE GFK-2222还支持远程监控和控制,用户可以通过互联网远程访问系统并进行操作。
总之,GE GFK-2222是一种高性能的工业自动化控制设备,能够实现工厂和生产线的智能化和自动化。它具有稳定可靠的性能,丰富的功能和灵活的配置,适用于各种工艺和应用场景。
相关问题
pk = - np.linalg.inv(H_lm).dot(gfk)
这是一个 Python 代码片段,其中使用了 NumPy 库中的 linalg.inv 函数来计算 H_lm 的逆矩阵,并使用 dot 函数计算 H_lm 的逆矩阵与 gfk 的矩阵乘积,最后将结果赋值给变量 pk。这个代码片段的具体实现需要依据上下文的信息来确定。你需要提供更多的背景信息,我才能更好地回答你的问题。
将下面这段源码转换为伪代码:def bfgs(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the BFGS algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 N = len(x0) I = np.eye(N, dtype=int) Hk = I old_old_fval = old_fval + np.linalg.norm(gfk) / 2 xk = x0 x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) while (gnorm > tol) and (k < iterations): pk = -np.dot(Hk, gfk) try: alpha, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100) except _LineSearchError: break x1 = xk + alpha * pk sk = x1 - xk xk = x1 if gfkp1 is None: gfkp1 = grad(x1) yk = gfkp1 - gfk gfk = gfkp1 k += 1 gnorm = np.amax(np.abs(gfk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) if (gnorm <= tol): break if not np.isfinite(old_fval): break try: rhok = 1.0 / (np.dot(yk, sk)) except ZeroDivisionError: rhok = 1000.0 if isinf(rhok): rhok = 1000.0 A1 = I - sk[:, np.newaxis] * yk[np.newaxis, :] * rhok A2 = I - yk[:, np.newaxis] * sk[np.newaxis, :] * rhok Hk = np.dot(A1, np.dot(Hk, A2)) + (rhok * sk[:, np.newaxis] * sk[np.newaxis, :]) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log
伪代码如下:
函数 bfgs(fun, grad, x0, iterations, tol):
fval <- 空值
grad_val <- 空值
x_log <- 空列表
y_log <- 空列表
grad_log <- 空列表
x0 <- 将 x0 转换为一维数组
old_fval <- 调用 fun(x0)
gfk <- 调用 grad(x0)
k <- 0
N <- x0 的长度
I <- 生成 N*N 的单位矩阵
Hk <- I
old_old_fval <- old_fval + 计算 gfk 的范数 / 2
xk <- x0
将 xk 添加到 x_log 列表末尾
将 fun(xk) 添加到 y_log 列表末尾
将 xk 与 x_log 最后一个元素的差的范数添加到 grad_log 列表末尾
gnorm <- 计算 gfk 的绝对值的最大值
while (gnorm > tol) and (k < iterations):
pk <- - Hk * gfk
尝试:
alpha, fc, gc, old_fval, old_old_fval, gfkp1 <- _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100)
捕获 _LineSearchError:
跳出循环
x1 <- xk + alpha * pk
sk <- x1 - xk
xk <- x1
如果 gfkp1 是空值:
gfkp1 <- 调用 grad(x1)
yk <- gfkp1 - gfk
gfk <- gfkp1
k <- k + 1
gnorm <- 计算 gfk 的绝对值的最大值
将 xk 与 x_log 最后一个元素的差的范数添加到 grad_log 列表末尾
将 xk 添加到 x_log 列表末尾
将 fun(xk) 添加到 y_log 列表末尾
如果 (gnorm <= tol):
跳出循环
如果 old_fval 不是有限数:
跳出循环
尝试:
rhok <- 1.0 / (yk · sk)
捕获 ZeroDivisionError:
rhok <- 1000.0
如果 rhok 是正无穷:
rhok <- 1000.0
A1 <- I - sk·yk.T·rhok
A2 <- I - yk·sk.T·rhok
Hk <- A1·Hk·A2 + rhok·sk·sk.T
fval <- old_fval
grad_val <- grad_log 最后一个元素
返回 xk, fval, grad_val, x_log, y_log, grad_log
阅读全文