TCN python源码
时间: 2023-08-30 11:07:05 浏览: 155
TCN.py
5星 · 资源好评率100%
TCN是一种时间卷积神经网络,可以用于序列数据的建模。以下是一个使用Python实现TCN的示例代码:
```python
import torch
import torch.nn as nn
class TemporalBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, dilation, padding):
super(TemporalBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation)
self.ch_norm1 = nn.BatchNorm1d(out_channels)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(0.2)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation)
self.ch_norm2 = nn.BatchNorm1d(out_channels)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(0.2)
if in_channels != out_channels:
self.res_conv = nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0)
else:
self.res_conv = None
self.relu = nn.ReLU()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.ch_norm1(out)
out = self.relu1(out)
out = self.dropout1(out)
out = self.conv2(out)
out = self.ch_norm2(out)
if self.res_conv is not None:
identity = self.res_conv(x)
out += identity
out = self.relu2(out)
out = self.dropout2(out)
return out
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size, padding=(kernel_size-1) * dilation_size)]
self.network = nn.Sequential(*layers)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.network(self.dropout(x))
class TCN(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(num_inputs, num_channels, kernel_size=kernel_size, dropout=dropout)
self.linear = nn.Linear(num_channels[-1], 1)
def forward(self, x):
y1 = self.tcn(x.transpose(1, 2)).transpose(1, 2)
y2 = self.linear(y1[:, :, -1])
return y2
```
这段代码实现了一个TCN模型,由三个部分组成:TemporalBlock、TemporalConvNet和TCN。TemporalBlock是TCN的基本模块,用于对输入数据进行处理;TemporalConvNet由多个TemporalBlock构成,用于建立TCN模型;TCN将TemporalConvNet的输出结果传入一个线性层,用于输出最终的预测结果。
阅读全文