遗传算法求函数最值(c语言实现

时间: 2023-09-09 17:14:41 浏览: 122
好的,我可以为您提供一个遗传算法求函数最值的C语言实现。下面是代码: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #include <math.h> #define POP_SIZE 100 // 种群数量 #define GENES_LEN 6 // 基因长度 #define CROSSOVER_RATE 0.7 // 交叉概率 #define MUTATION_RATE 0.001 // 变异概率 #define MAX_GENERATION 1000 // 最大迭代次数 // 随机生成一个二进制基因 int *generate_genes() { int *genes = (int *)malloc(GENES_LEN * sizeof(int)); for (int i = 0; i < GENES_LEN; i++) { genes[i] = rand() % 2; } return genes; } // 计算二进制基因所代表的十进制数值 double decode(int *genes) { double value = 0.0; for (int i = 0; i < GENES_LEN; i++) { value += genes[i] * pow(2, GENES_LEN - 1 - i); } return value; } // 计算目标函数的值 double fitness(double x) { return sin(10 * M_PI * x) / (2 * x) + pow(x - 1, 4); } // 计算种群中每个个体的适应度 double *calculate_fitness(int **pop) { double *fitness_values = (double *)malloc(POP_SIZE * sizeof(double)); for (int i = 0; i < POP_SIZE; i++) { double x = decode(pop[i]); fitness_values[i] = fitness(x); } return fitness_values; } // 从种群中选择两个个体进行交叉 void crossover(int *parent1, int *parent2, int *child1, int *child2) { if ((double)rand() / RAND_MAX < CROSSOVER_RATE) { int crossover_point = rand() % GENES_LEN; for (int i = 0; i < crossover_point; i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } for (int i = crossover_point; i < GENES_LEN; i++) { child1[i] = parent2[i]; child2[i] = parent1[i]; } } else { for (int i = 0; i < GENES_LEN; i++) { child1[i] = parent1[i]; child2[i] = parent2[i]; } } } // 对个体进行变异 void mutate(int *genes) { for (int i = 0; i < GENES_LEN; i++) { if ((double)rand() / RAND_MAX < MUTATION_RATE) { genes[i] = !genes[i]; } } } // 选择一个个体 int *select(double *fitness_values, int **pop) { double sum = 0.0; for (int i = 0; i < POP_SIZE; i++) { sum += fitness_values[i]; } double r = (double)rand() / RAND_MAX * sum; double s = 0.0; for (int i = 0; i < POP_SIZE; i++) { s += fitness_values[i]; if (s >= r) { return pop[i]; } } return pop[POP_SIZE - 1]; } // 打印最优解 void print_best(double best_x, double best_fitness, int generation) { printf("Generation %d: x = %lf, f(x) = %lf\n", generation, best_x, best_fitness); } int main() { srand(time(NULL)); // 初始化种群 int **pop = (int **)malloc(POP_SIZE * sizeof(int *)); for (int i = 0; i < POP_SIZE; i++) { pop[i] = generate_genes(); } // 开始迭代 double best_fitness = -1e100; double best_x = 0.0; for (int generation = 1; generation <= MAX_GENERATION; generation++) { double *fitness_values = calculate_fitness(pop); // 计算种群中最优解 for (int i = 0; i < POP_SIZE; i++) { double x = decode(pop[i]); double f = fitness(x); if (f > best_fitness) { best_fitness = f; best_x = x; } } print_best(best_x, best_fitness, generation); // 新种群 int **new_pop = (int **)malloc(POP_SIZE * sizeof(int *)); for (int i = 0; i < POP_SIZE; i++) { // 选择两个个体进行交叉 int *parent1 = select(fitness_values, pop); int *parent2 = select(fitness_values, pop); int *child1 = (int *)malloc(GENES_LEN * sizeof(int)); int *child2 = (int *)malloc(GENES_LEN * sizeof(int)); crossover(parent1, parent2, child1, child2); // 对交叉后的两个个体进行变异 mutate(child1); mutate(child2); new_pop[i] = child1; new_pop[i + 1] = child2; } // 释放旧种群 for (int i = 0; i < POP_SIZE; i++) { free(pop[i]); } free(pop); // 更新种群 pop = new_pop; free(fitness_values); } return 0; } ``` 这个程序使用遗传算法来求解一个函数的最值。其中,种群数量为100,每个个体的基因长度为6位,交叉概率为0.7,变异概率为0.001,最大迭代次数为1000次。您可以根据需要进行修改。
阅读全文

相关推荐

最新推荐

recommend-type

python 遗传算法求函数极值的实现代码

本篇将详细解释如何使用Python实现遗传算法来求解函数的极值。 首先,我们创建一个名为`Ga`的类,该类包含了遗传算法的核心组件: 1. **初始化**:`__init__`方法设置了搜索空间的边界(`boundsbegin`和`boundsend...
recommend-type

C语言模拟实现atoi函数的实例详解

C语言模拟实现atoi函数的实例详解 以下是关于C语言模拟实现atoi函数的实例详解的知识点: 1. atoi函数的实现:atoi函数的主要功能是将一个字符串转变为整数。在实现atoi函数时,需要注意指针为NULL、字符串为空...
recommend-type

常用Hash算法(C语言的简单实现)

C语言中的简单实现通常使用基本的数据类型如`unsigned int`来存储哈希值。 1. **RSHash**(Robert Sedgewick哈希函数): 这个函数使用两个常量`a`和`b`进行迭代计算。初始时,哈希值设为0,然后遍历字符串中的每...
recommend-type

实数FFT算法的设计及其C语言实现

本资源摘要信息旨在介绍实数FFT算法的设计和C语言实现,通过对算法的推导和C语言函数的实现,旨在为读者提供一个实用的解决方案,能够直接应用于自己的系统中。 一、实数FFT算法的设计 实数FFT算法是快速傅里叶...
recommend-type

基于C语言实现的aes256加密算法示例

总结起来,基于C语言实现的AES256加密算法需要理解并实现以下核心部分: - 结构体`aes256_context`的定义和使用 - 密钥的扩展和存储 - ECB模式的加密和解密函数 - 非线性变换函数`F()`和`FD()` - AES的S盒查找表 - ...
recommend-type

Terraform AWS ACM 59版本测试与实践

资源摘要信息:"本资源是关于Terraform在AWS上操作ACM(AWS Certificate Manager)的模块的测试版本。Terraform是一个开源的基础设施即代码(Infrastructure as Code,IaC)工具,它允许用户使用代码定义和部署云资源。AWS Certificate Manager(ACM)是亚马逊提供的一个服务,用于自动化申请、管理和部署SSL/TLS证书。在本资源中,我们特别关注的是Terraform的一个特定版本的AWS ACM模块的测试内容,版本号为59。 在AWS中部署和管理SSL/TLS证书是确保网站和应用程序安全通信的关键步骤。ACM服务可以免费管理这些证书,当与Terraform结合使用时,可以让开发者以声明性的方式自动化证书的获取和配置,这样可以大大简化证书管理流程,并保持与AWS基础设施的集成。 通过使用Terraform的AWS ACM模块,开发人员可以编写Terraform配置文件,通过简单的命令行指令就能申请、部署和续订SSL/TLS证书。这个模块可以实现以下功能: 1. 自动申请Let's Encrypt的免费证书或者导入现有的证书。 2. 将证书与AWS服务关联,如ELB(Elastic Load Balancing)、CloudFront和API Gateway等。 3. 管理证书的过期时间,自动续订证书以避免服务中断。 4. 在多区域部署中同步证书信息,确保全局服务的一致性。 测试版本59的资源意味着开发者可以验证这个版本是否满足了需求,是否存在任何的bug或不足之处,并且提供反馈。在这个版本中,开发者可以测试Terraform AWS ACM模块的稳定性和性能,确保在真实环境中部署前一切工作正常。测试内容可能包括以下几个方面: - 模块代码的语法和结构检查。 - 模块是否能够正确执行所有功能。 - 模块与AWS ACM服务的兼容性和集成。 - 模块部署后证书的获取、安装和续订的可靠性。 - 多区域部署的证书同步机制是否有效。 - 测试异常情况下的错误处理机制。 - 确保文档的准确性和完整性。 由于资源中没有提供具体的标签,我们无法从中获取关于测试的详细技术信息。同样,由于只提供了一个文件名“terraform-aws-acm-59-master”,无法得知该模块具体包含哪些文件和代码内容。然而,文件名暗示这是一个主版本(master),通常意味着这是主要的、稳定的分支,开发者可以在其上构建和测试他们的配置。 总之,terraform-aws-acm-59是Terraform的一个AWS ACM模块的测试版本,用于自动化管理和部署SSL/TLS证书。这个模块能够简化证书生命周期的管理,并提高与AWS服务的集成效率。测试工作主要是为了验证版本59的模块是否正常工作,并确保其在真实场景中可靠地执行预期功能。"
recommend-type

【HS1101湿敏电阻全面解析】:从基础知识到深度应用的完整指南

# 摘要 HS1101湿敏电阻作为湿度监测的重要元件,在环境监测、农业、工业等多个领域都有广泛应用。本文首先对湿敏电阻的基本概念及其工作原理进行了概述,接着详细探讨了其特性参数,如响应时间、灵敏度以及温度系数等,并针对HS1101型号提供了选型指南和实际应用场景分析。文章还深入讨论了HS1101湿敏电阻在电路设计中的要点和信号处理方法,提供了实践案例来展示其在智能湿度调节器和农业自动灌溉系统中的应用。最后,本文给出了湿敏电阻的维护保养技巧和故障排除方法,以帮助用户确保湿敏电阻的最佳性能和使用寿命。 # 关键字 湿敏电阻;HS1101;特性参数;电路设计;信号处理;环境监测;故障排除 参考资
recommend-type

MATLAB在一个图形窗口中创建一行两列的子图的代码

在MATLAB中,可以使用`subplot`函数在一个图形窗口中创建多个子图。对于一行两列的子图,可以使用以下代码: ```matlab % 创建第一个子图 subplot(1, 2, 1); plot([1, 2, 3], [4, 5, 6]); title('子图1'); % 创建第二个子图 subplot(1, 2, 2); plot([1, 2, 3], [6, 5, 4]); title('子图2'); ``` 这段代码的详细解释如下: 1. `subplot(1, 2, 1);`:创建一个1行2列的子图布局,并激活第一个子图。 2. `plot([1, 2, 3], [4,
recommend-type

Doks Hugo主题:打造安全快速的现代文档网站

资源摘要信息:"Doks是一个适用于Hugo的现代文档主题,旨在帮助用户构建安全、快速且对搜索引擎优化友好的文档网站。在短短1分钟内即可启动一个具有Doks特色的演示网站。以下是选择Doks的九个理由: 1. 安全意识:Doks默认提供高安全性的设置,支持在上线时获得A+的安全评分。用户还可以根据自己的需求轻松更改默认的安全标题。 2. 默认快速:Doks致力于打造速度,通过删除未使用的CSS,实施预取链接和图像延迟加载技术,在上线时自动达到100分的速度评价。这些优化有助于提升网站加载速度,提供更佳的用户体验。 3. SEO就绪:Doks内置了对结构化数据、开放图谱和Twitter卡的智能默认设置,以帮助网站更好地被搜索引擎发现和索引。用户也能根据自己的喜好对SEO设置进行调整。 4. 开发工具:Doks为开发人员提供了丰富的工具,包括代码检查功能,以确保样式、脚本和标记无错误。同时,还支持自动或手动修复常见问题,保障代码质量。 5. 引导框架:Doks利用Bootstrap框架来构建网站,使得网站不仅健壮、灵活而且直观易用。当然,如果用户有其他前端框架的需求,也可以轻松替换使用。 6. Netlify就绪:Doks为部署到Netlify提供了合理的默认配置。用户可以利用Netlify平台的便利性,轻松部署和维护自己的网站。 7. SCSS支持:在文档主题中提及了SCSS,这表明Doks支持使用SCSS作为样式表预处理器,允许更高级的CSS样式化和模块化设计。 8. 多语言支持:虽然没有在描述中明确提及,但Doks作为Hugo主题,通常具备多语言支持功能,这为构建国际化文档网站提供了便利。 9. 定制性和可扩展性:Doks通过其设计和功能的灵活性,允许用户根据自己的品牌和项目需求进行定制。这包括主题颜色、布局选项以及组件的添加或修改。 文件名称 'docs-main' 可能是Doks主题的核心文件,包含网站的主要内容和配置。这个文件对于设置和维护文档网站来说是至关重要的,因为它包含了网站的主要配置信息,如导航结构、品牌设置、SEO配置等。开发者在使用Doks主题时,将重点调整和优化这个文件以满足具体的项目需求。"
recommend-type

E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则

![E9流程表单前端接口API(V5):前端与后端协同开发的黄金法则](https://opengraph.githubassets.com/4b7b246f81a756c8056ca0f80a5b46fad74e128b86dec7d59f1aeedb4b99c6a7/sotiriosmoustogiannis/process-json-format) # 摘要 本文全面介绍了E9流程表单API(V5)的开发与应用,阐述了协同开发理论基础和前端实践,并结合案例分析展示了API在企业流程自动化中的实战应用。文章首先概述了E9流程表单API(V5)的核心概念,然后详细探讨了前后端协同开发的重要