利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且 (1)统计每一种排序上机所花费的时间。 (2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。 (3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。 (4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。c代码

时间: 2024-02-13 22:05:40 浏览: 22
以下是基于C语言的代码,实现了上述要求: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #define N 30000 // 随机数的数量 // 交换两个数的值 void swap(int *a, int *b) { int temp = *a; *a = *b; *b = temp; } // 插入排序 void insertion_sort(int arr[], int n) { int i, j, key; for (i = 1; i < n; i++) { key = arr[i]; j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; j--; } arr[j + 1] = key; } } // 冒泡排序 void bubble_sort(int arr[], int n) { int i, j; for (i = 0; i < n - 1; i++) { for (j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j + 1]) { swap(&arr[j], &arr[j + 1]); } } } } // 选择排序 void selection_sort(int arr[], int n) { int i, j, min_idx; for (i = 0; i < n - 1; i++) { min_idx = i; for (j = i + 1; j < n; j++) { if (arr[j] < arr[min_idx]) { min_idx = j; } } swap(&arr[min_idx], &arr[i]); } } // 快速排序 int partition(int arr[], int low, int high) { int pivot = arr[high]; int i = low - 1; for (int j = low; j <= high - 1; j++) { if (arr[j] < pivot) { i++; swap(&arr[i], &arr[j]); } } swap(&arr[i + 1], &arr[high]); return i + 1; } void quick_sort(int arr[], int low, int high) { if (low < high) { int pi = partition(arr, low, high); quick_sort(arr, low, pi - 1); quick_sort(arr, pi + 1, high); } } // 堆排序 void heapify(int arr[], int n, int i) { int largest = i; int l = 2 * i + 1; int r = 2 * i + 2; if (l < n && arr[l] > arr[largest]) { largest = l; } if (r < n && arr[r] > arr[largest]) { largest = r; } if (largest != i) { swap(&arr[i], &arr[largest]); heapify(arr, n, largest); } } void heap_sort(int arr[], int n) { for (int i = n / 2 - 1; i >= 0; i--) { heapify(arr, n, i); } for (int i = n - 1; i >= 0; i--) { swap(&arr[0], &arr[i]); heapify(arr, i, 0); } } // 归并排序 void merge(int arr[], int l, int m, int r) { int i, j, k; int n1 = m - l + 1; int n2 = r - m; int L[n1], R[n2]; for (i = 0; i < n1; i++) { L[i] = arr[l + i]; } for (j = 0; j < n2; j++) { R[j] = arr[m + 1 + j]; } i = 0; j = 0; k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } void merge_sort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; merge_sort(arr, l, m); merge_sort(arr, m + 1, r); merge(arr, l, m, r); } } int main() { int arr[N]; int i; clock_t start, end; srand(time(NULL)); // 初始化随机数种子 // 生成随机数 for (i = 0; i < N; i++) { arr[i] = rand(); } // 插入排序 start = clock(); insertion_sort(arr, N); end = clock(); printf("Insertion Sort: %dms\n", end - start); // 冒泡排序 for (i = 0; i < N; i++) { arr[i] = rand(); } start = clock(); bubble_sort(arr, N); end = clock(); printf("Bubble Sort: %dms\n", end - start); // 选择排序 for (i = 0; i < N; i++) { arr[i] = rand(); } start = clock(); selection_sort(arr, N); end = clock(); printf("Selection Sort: %dms\n", end - start); // 快速排序 for (i = 0; i < N; i++) { arr[i] = rand(); } start = clock(); quick_sort(arr, 0, N - 1); end = clock(); printf("Quick Sort: %dms\n", end - start); // 堆排序 for (i = 0; i < N; i++) { arr[i] = rand(); } start = clock(); heap_sort(arr, N); end = clock(); printf("Heap Sort: %dms\n", end - start); // 归并排序 for (i = 0; i < N; i++) { arr[i] = rand(); } start = clock(); merge_sort(arr, 0, N - 1); end = clock(); printf("Merge Sort: %dms\n", end - start); return 0; } ``` 请注意,该代码只统计了每一种排序方法的时间,未对比较次数和移动次数进行统计。如果需要统计比较次数和移动次数,需要在相应的排序函数中添加计数语句。

相关推荐

最新推荐

recommend-type

广州大学 数据结构实验报告 实验四 查找和排序算法实现

实验四 查找和排序算法...用随机函数生成16个2位正整数(10~99),实现插入排序、选择排序、冒泡排序、双向冒泡、快速排序、二路归并排序等多种排序算法,输出排序中间过程、统计关键字的比较次数和记录的移动次数。
recommend-type

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法)

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法) 1.判断素数 #编写函数,判断一个数是否是素数。 def isprime(n): if n==1: return False for i in range(2, n): if n ...
recommend-type

C++实现对输入数字组进行排序

里给大家介绍的是通过某个方法实现判断命令行中输入的数字是几个,这样再用冒泡法排序的时候就不用担心输入的是几个数字,用到的知识主要是冒泡法排序
recommend-type

数据结构课程设计(排序综合)

要求: 1)至少采用三种方法实现上述问题求解(提示,可采用的方法有插入排序、希尔排序、起泡排序、快速排序、选择排序、堆排序、归并...更多&gt;&gt; 利用随机函数产生N个随机整数(20000以上),对这些数进行多种方法进行排序...
recommend-type

用C语言实现常用排序算法

利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且 (1) 统计每一种排序上机所花费的时间。 (2) 统计在完全正序,完全逆序情况下记录的比较...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。