iterations = epochs*(ntrain//batch_size)

时间: 2023-09-10 19:15:41 浏览: 48
这个等式是用来计算训练模型所需的总迭代次数(iterations)的。其中,epochs表示训练轮数,ntrain表示训练集的样本数量,batch_size表示每个batch的样本数量。具体来说,ntrain//batch_size表示每个epoch需要迭代的batch数,然后将其乘以epochs,就可以得到总的迭代次数。这个等式可以帮助我们确定训练模型所需的时间和计算资源。
相关问题

for i, (real_A, real_B) in enumerate(train_loader): num_iterations = (n_samples // self.mini_batch_size) * epoch + i

这段代码是一个训练循环,其中 `train_loader` 是一个 PyTorch DataLoader 对象,用于加载训练数据。在每个迭代中,从 `train_loader` 中获取一个大小为 `mini_batch_size` 的批量数据 `(real_A, real_B)`,其中 `real_A` 和 `real_B` 分别是输入和目标输出。这些数据将用于训练模型。 变量 `num_iterations` 是一个迭代计数器,用于跟踪训练过程中的总迭代数。它的值是当前 epoch 的迭代数乘以总样本数除以每个 mini-batch 的大小,再加上当前迭代数 `i`。这个计数器可以用于记录训练过程中的损失值,或者用于学习率调整等操作。

iter_per_epoch = max(train_size / batch_size, 1)啥意思

这段代码计算了每个训练周期(epoch)中的迭代次数(iterations)。 ```python iter_per_epoch = max(train_size / batch, 1) ``` 在机器学习中,训练数据通常会被分成一小批一小批进行训练,这些小批数据被称为批次(batches)。`batch_size`表示每个批次中包含的样本数量。 `train_size`表示训练数据集的总样本数量。 通过上述代码,计算得到每个训练周期中需要进行的迭代次数。这个迭代次数可以通过将总样本数量除以批次大小来计算得到。然而,为了确保至少进行一次迭代,使用了`max()`函数将计算结果与1进行比较,取两者中的较大值作为最终的迭代次数。 这个迭代次数的计算可以用于控制训练过程中迭代的次数,确保每个样本都被使用到。具体的含义还取决于其他代码和上下文中的使用方式。

相关推荐

代码time_start = time.time() results = list() iterations = 2001 lr = 1e-2 model = func_critic_model(input_shape=(None, train_img.shape[1]), act_func='relu') loss_func = tf.keras.losses.MeanSquaredError() alg = "gd" # alg = "gd" for kk in range(iterations): with tf.GradientTape() as tape: predict_label = model(train_img) loss_val = loss_func(predict_label, train_lbl) grads = tape.gradient(loss_val, model.trainable_variables) overall_grad = tf.concat([tf.reshape(grad, -1) for grad in grads], 0) overall_model = tf.concat([tf.reshape(weight, -1) for weight in model.weights], 0) overall_grad = overall_grad + 0.001 * overall_model ## adding a regularization term results.append(loss_val.numpy()) if alg == 'gd': overall_model -= lr * overall_grad ### gradient descent elif alg == 'gdn': ## gradient descent with nestrov's momentum overall_vv_new = overall_model - lr * overall_grad overall_model = (1 + gamma) * oerall_vv_new - gamma * overall_vv overall_vv = overall_new pass model_start = 0 for idx, weight in enumerate(model.weights): model_end = model_start + tf.size(weight) weight.assign(tf.reshape()) for grad, ww in zip(grads, model.weights): ww.assign(ww - lr * grad) if kk % 100 == 0: print(f"Iter: {kk}, loss: {loss_val:.3f}, Duration: {time.time() - time_start:.3f} sec...") input_shape = train_img.shape[1] - 1 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(input_shape,)), tf.keras.layers.Dense(30, activation="relu"), tf.keras.layers.Dense(20, activation="relu"), tf.keras.layers.Dense(1) ]) n_epochs = 20 batch_size = 100 learning_rate = 0.01 momentum = 0.9 sgd_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum) model.compile(loss="mean_squared_error", optimizer=sgd_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl)) nag_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum, nesterov=True) model.compile(loss="mean_squared_error", optimizer=nag_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl))运行后报错TypeError: Missing required positional argument,如何改正

解释 int nSize = pdPoints.size(); if (nSize < 3) { return; } vector<double>vdX; vector<double>vdY; double dMeanX = 0, dMeanY = 0; for (Point2d p : pdPoints) { vdX.push_back(p.x); vdY.push_back(p.y); dMeanX += p.x; dMeanY += p.y; } dMeanX /= (nSize * 1.); dMeanY /= (nSize * 1.); double Xi = 0, Yi = 0, Zi = 0; double Mz = 0, Mxy = 0, Mxx = 0, Myy = 0, Mxz = 0, Myz = 0, Mzz = 0, Cov_xy = 0, Var_z=0; double A0 = 0, A1 = 0, A2 = 0, A22 = 0; double Dy = 0, xnew = 0, x = 0, ynew = 0, y = 0; double DET = 0, Xcenter = 0, Ycenter = 0; for (int i = 0; i < nSize; i++) { Xi = vdX[i] - dMeanX; // centered x-coordinates Yi = vdY[i] - dMeanY; // centered y-coordinates Zi = Xi * Xi + Yi * Yi; Mxy += Xi * Yi; Mxx += Xi * Xi; Myy += Yi * Yi; Mxz += Xi * Zi; Myz += Yi * Zi; Mzz += Zi * Zi; } Mxx /= (nSize * 1.); Myy /= (nSize * 1.); Mxy /= (nSize * 1.); Mxz /= (nSize * 1.); Myz /= (nSize * 1.); Mzz /= (nSize * 1.); Mz = Mxx + Myy; Cov_xy = Mxx * Myy - Mxy * Mxy; Var_z = Mzz - Mz * Mz; A2 = 4.0 * Cov_xy - 3.0 * Mz * Mz - Mzz; A1 = Var_z * Mz + 4.0 * Cov_xy * Mz - Mxz * Mxz - Myz * Myz; A0 = Mxz * (Mxz * Myy - Myz * Mxy) + Myz * (Myz * Mxx - Mxz * Mxy) - Var_z * Cov_xy; A22 = A2 + A2; // finding the root of the characteristic polynomial // using Newton's method starting at x=0 // (it is guaranteed to converge to the right root) x = 0., y = A0; for (int i = 0; i < 99; i++) // usually, 4-6 iterations are enough { Dy = A1 + x * (A22 + 16. * x * x); xnew = x - y / Dy; if ((xnew == x) || (!isfinite(xnew))) { break; } ynew = A0 + xnew * (A1 + xnew * (A2 + 4.0 * xnew * xnew)); if (abs(ynew) >= abs(y)) { break; } x = xnew; y = ynew; } DET = x * x - x * Mz + Cov_xy; Xcenter = (Mxz * (Myy - x) - Myz * Mxy) / DET / 2.0; Ycenter = (Myz * (Mxx - x) - Mxz * Mxy) / DET / 2.0; dRadius = sqrt(Xcenter * Xcenter + Ycenter * Ycenter + Mz - x - x); pdCenter = Point2d(Xcenter + dMeanX, Ycenter + dMeanY);

import sys,numpy as np from keras.datasets import mnist (x_train,y_train),(x_test,y_test)=mnist.load_data() images,labels=(x_train[0:1000].reshape(1000,28*28)/255,y_train[0:1000]) one_hot_labels=np.zeros((len(labels),10)) for i,l in enumerate(labels): one_hot_labels[i][l]=1 labels=one_hot_labels test_images=x_test.reshape(len(x_test),28*28)/255 test_labels=np.zeros((len(y_test),10)) for i,l in enumerate(y_test): test_labels[i][l]=1 np.random.seed(1) def relu(x): return (x>=0)*x #此函数将所有负数设为0 def relu2deriv(output): return output>=0 #当input>0时,返回1,否则返回0 alpha,iterations,hidden_size=(0.005,300,100) pixels_per_image,num_labels=(784,10) weights_0_1=0.2*np.random.random((pixels_per_image,hidden_size))-0.1 weights_1_2=0.2*np.random.random((hidden_size,num_labels))-0.1 for j in range(iterations): error,correct_cnt=(0.0,0) for i in range(len(images)): layer_0=images[i:i+1] layer_1=relu(np.dot(layer_0,weights_0_1)) dropout_mask=np.random.randint(2,size=layer_1.shape) layer_1*=dropout_mask*2 layer_2=np.dot(layer_1,weights_1_2) error+=np.sum((labels[i:i+1]-layer_2)**2) correct_cnt+=int(np.argmax(layer_2)==\ np.argmax(labels[i:i+1])) layer_2_delta=(labels[i:i+1]-layer_2) layer_1_delta=layer_2_delta.dot(weights_1_2.T)*relu2deriv(layer_1) layer_1_delta+=dropout_mask weights_1_2+=alpha*layer_1.T.dot(layer_2_delta) weights_0_1+=alpha*layer_0.T.dot(layer_1_delta) if (j%10==0): test_error=0.0 test_correct_cnt=0 for i in range(len(test_images)): layer_0=test_images[i:i+1] layer_1=relu(np.dot(layer_0,weights_0_1)) layer_2=np.dot(layer_1,weights_1_2) test_error+=np.sum((test_labels[i:i+1]-layer_2)**2) test_correct_cnt+=int(np.argmax(layer_2)==np.argmax(test_labels[i:i+1])) sys.stdout.write("\n"+\ "I:"+str(j)+\ " Test-Error:"+str(test_error/float(len(test_images)))[0:5] +\ " Test-Acc:"+str(test_correct_cnt/float(len(test_images)))+\ " Train-Err:"+str(error/float(len(images)))[0:5]+\ " Train-Acc:"+str(correct_cnt/float(len(images))))帮我看看哪里有问题

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

setuptools-34.0.3.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于遗传优化GA的三目标优化仿真【包括程序,注释,操作步骤】

1.版本:matlab2022A。 2.包含:程序,中文注释,仿真操作步骤(使用windows media player播放)。 3.领域:遗传优化 4.仿真效果:仿真效果可以参考博客同名文章《基于遗传优化GA的三目标优化仿真》 5.内容:基于遗传优化GA的三目标优化仿真。遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局搜索优化方法,广泛应用于解决复杂优化问题,包括具有多个目标的优化问题,即多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA)。在这里,将三个目标函数进行统一的编码,通过单目标遗传优化的方式,同步求解三个目标函数的最优值。 6.注意事项:注意MATLAB左侧当前文件夹路径,必须是程序所在文件夹位置,具体可以参考视频录。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这