iterations = epochs*(ntrain//batch_size)
时间: 2023-09-10 11:15:41 浏览: 240
这个等式是用来计算训练模型所需的总迭代次数(iterations)的。其中,epochs表示训练轮数,ntrain表示训练集的样本数量,batch_size表示每个batch的样本数量。具体来说,ntrain//batch_size表示每个epoch需要迭代的batch数,然后将其乘以epochs,就可以得到总的迭代次数。这个等式可以帮助我们确定训练模型所需的时间和计算资源。
相关问题
代码time_start = time.time() results = list() iterations = 2001 lr = 1e-2 model = func_critic_model(input_shape=(None, train_img.shape[1]), act_func='relu') loss_func = tf.keras.losses.MeanSquaredError() alg = "gd" # alg = "gd" for kk in range(iterations): with tf.GradientTape() as tape: predict_label = model(train_img) loss_val = loss_func(predict_label, train_lbl) grads = tape.gradient(loss_val, model.trainable_variables) overall_grad = tf.concat([tf.reshape(grad, -1) for grad in grads], 0) overall_model = tf.concat([tf.reshape(weight, -1) for weight in model.weights], 0) overall_grad = overall_grad + 0.001 * overall_model ## adding a regularization term results.append(loss_val.numpy()) if alg == 'gd': overall_model -= lr * overall_grad ### gradient descent elif alg == 'gdn': ## gradient descent with nestrov's momentum overall_vv_new = overall_model - lr * overall_grad overall_model = (1 + gamma) * oerall_vv_new - gamma * overall_vv overall_vv = overall_new pass model_start = 0 for idx, weight in enumerate(model.weights): model_end = model_start + tf.size(weight) weight.assign(tf.reshape()) for grad, ww in zip(grads, model.weights): ww.assign(ww - lr * grad) if kk % 100 == 0: print(f"Iter: {kk}, loss: {loss_val:.3f}, Duration: {time.time() - time_start:.3f} sec...") input_shape = train_img.shape[1] - 1 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(input_shape,)), tf.keras.layers.Dense(30, activation="relu"), tf.keras.layers.Dense(20, activation="relu"), tf.keras.layers.Dense(1) ]) n_epochs = 20 batch_size = 100 learning_rate = 0.01 momentum = 0.9 sgd_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum) model.compile(loss="mean_squared_error", optimizer=sgd_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl)) nag_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum, nesterov=True) model.compile(loss="mean_squared_error", optimizer=nag_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl))运行后报错TypeError: Missing required positional argument,如何改正
这个错误信息并没有指明是哪个函数缺少了必要的位置参数,因此需要仔细检查代码。根据代码的结构,可能是在使用`tf.reshape()`函数时缺少了必要的参数。
具体来说,下面这行代码中出现了这个错误:
```
weight.assign(tf.reshape())
```
`tf.reshape()`函数需要传入两个必要的参数:`tensor`和`shape`。因此,你需要指定这个函数的第一个参数`tensor`,也就是`weight`,以及希望将其reshape成的新形状`shape`。例如,如果你希望将`weight`变成一个形状为`(batch_size, input_shape)`的张量,可以这样写:
```
weight.assign(tf.reshape(weight, (batch_size, input_shape)))
```
请根据你的实际需求修改这行代码,确保`tf.reshape()`函数的两个参数都被正确地指定。
如何查看小批梯度下降中一共训练了多少epoch, batch size是多少,一个epoch中有多少次iteration
在小批梯度下降中,一共训练了多少epoch、batch size以及一个epoch中有多少次iteration,可以通过以下方法查看:
1. 查看训练代码中的参数设置部分,通常会设置epoch数和batch size大小,例如:
```
num_epochs = 10
batch_size = 32
```
2. 计算一个epoch中的iteration次数,可以通过以下公式计算:
```
num_iterations = num_samples / batch_size
```
其中,num_samples是训练数据集的样本数。
3. 在训练过程中,可以通过打印日志或保存训练记录来查看训练过程中的epoch数和iteration次数。
例如,可以在每个epoch结束时打印出当前epoch数和iteration次数:
```
for epoch in range(num_epochs):
for i, (inputs, targets) in enumerate(train_loader):
# 训练模型
...
# 打印当前epoch数和iteration次数
print('Epoch [{}/{}], Iteration [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, num_iterations, loss.item()))
```
或者在训练过程中保存训练记录,例如保存每个epoch的平均损失:
```
losses = []
for epoch in range(num_epochs):
for inputs, targets in train_loader:
# 训练模型
...
# 记录当前batch的损失
losses.append(loss.item())
# 计算当前epoch的平均损失,并保存到文件中
avg_loss = sum(losses) / len(losses)
with open('train.log', 'a') as f:
f.write('Epoch {}: {:.4f}\n'.format(epoch+1, avg_loss))
```
通过查看保存的训练记录文件,可以得知训练过程中的epoch数和iteration次数。
阅读全文