pytorch中调用focal loss
时间: 2023-11-27 12:02:09 浏览: 167
在 PyTorch 中,可以通过使用 torch.nn.functional 中的 focal_loss 函数来实现 Focal Loss。以下是一个示例代码片段:
```python
import torch.nn.functional as F
def focal_loss(prediction, target, alpha=0.25, gamma=2):
pt = torch.exp(-F.binary_cross_entropy(prediction, target, reduction='none'))
loss = alpha * (1-pt)**gamma * F.binary_cross_entropy(prediction, target, reduction='mean')
return loss
```
在上面的代码中,prediction 是模型的输出,target 是标签,alpha 和 gamma 是 Focal Loss 中的两个超参数。函数中的代码实现了标准 Focal Loss 的计算流程。
相关问题
pytorch如何在yolov7中实现focal loss,实例说明
在 YOLOv7 中使用 Focal Loss,需要在网络训练时计算每个样本的权重。Focal Loss 是一种针对类别不平衡的损失函数,它可以有效地解决类别不平衡问题。在 Focal Loss 中,通过引入一个可调参数 $\gamma$,使得难分类样本的权重更大,从而提高模型对难分类样本的关注度。
下面是一个使用 PyTorch 实现 Focal Loss 的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, inputs, targets):
if inputs.dim() > 2:
inputs = inputs.view(inputs.size(0), inputs.size(1), -1)
inputs = inputs.transpose(1, 2)
inputs = inputs.contiguous().view(-1, inputs.size(2))
targets = targets.view(-1, 1)
logpt = F.log_softmax(inputs, dim=1)
logpt = logpt.gather(1, targets)
logpt = logpt.view(-1)
pt = logpt.exp()
if self.alpha is not None:
if self.alpha.type() != inputs.data.type():
self.alpha = self.alpha.type_as(inputs.data)
at = self.alpha.gather(0, targets.view(-1))
logpt = logpt * at
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()
```
在 YOLOv7 中使用 Focal Loss,需要在网络中调用该损失函数。以下是使用 Focal Loss 训练 YOLOv7 的示例代码:
```python
import torch
import torch.nn as nn
from focal_loss import FocalLoss
class YOLOv7(nn.Module):
def __init__(self):
super(YOLOv7, self).__init__()
# define your network architecture here
def forward(self, x):
# define your forward pass here
model = YOLOv7()
criterion = FocalLoss(gamma=2)
# define your optimizer and dataloader here
for epoch in range(num_epochs):
for i, (images, targets) in enumerate(dataloader):
# forward pass
outputs = model(images)
loss = criterion(outputs, targets)
# backward pass and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# print loss
if (i+1) % 10 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
```
在上面的示例代码中,我们将 Focal Loss 定义为 `criterion`,并在每个训练迭代中调用它来计算损失。
pytorch代码实现训练损失函数使用Focal Loss 损失函数
好的,以下是使用Pytorch实现Focal Loss损失函数的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, gamma=2, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)): self.alpha = torch.Tensor([alpha, 1 - alpha])
if isinstance(alpha, list): self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim() > 2:
input = input.view(input.size(0), input.size(1), -1) # N,C,H,W => N,C,H*W
input = input.transpose(1, 2) # N,C,H*W => N,H*W,C
input = input.contiguous().view(-1, input.size(2)) # N,H*W,C => N*H*W,C
target = target.view(-1, 1)
logpt = F.log_softmax(input)
logpt = logpt.gather(1, target)
logpt = logpt.view(-1)
pt = logpt.data.exp()
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.data.view(-1))
logpt = logpt * at
loss = -1 * (1 - pt) ** self.gamma * logpt
if self.size_average: return loss.mean()
else: return loss.sum()
```
其中,`gamma`是超参数,控制着难易样本的权重,一般默认为2;`alpha`是类别权重系数,可以为None、float、int或list类型;`size_average`控制是否对每个样本的损失求平均,默认为True。
使用时,只需在训练代码中调用该损失函数即可:
```python
loss_fn = FocalLoss(gamma=2, alpha=[0.25, 0.75])
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
阅读全文