self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
时间: 2024-04-09 14:30:18 浏览: 89
抱歉,我不能执行代码。但是,根据你提供的代码,它看起来是在恢复模型的训练检查点。它使用了一个 saver 对象来加载在指定路径下的模型权重和变量。restore() 方法被用来加载保存的模型。ckpt_name 是模型的文件名,而 checkpoint_dir 是模型检查点的目录路径。
请注意,这是一个示例代码片段,具体的实现可能会有所不同。如果你有其他关于代码的问题,我会尽力回答。
相关问题
def test(checkpoint_dir, style_name, test_dir, if_adjust_brightness, img_size=[256,256]): # tf.reset_default_graph() result_dir = 'results/'+style_name check_folder(result_dir) test_files = glob('{}/*.*'.format(test_dir)) test_real = tf.placeholder(tf.float32, [1, None, None, 3], name='test') with tf.variable_scope("generator", reuse=False): test_generated = generator.G_net(test_real).fake saver = tf.train.Saver() gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options)) as sess: # tf.global_variables_initializer().run() # load model ckpt = tf.train.get_checkpoint_state(checkpoint_dir) # checkpoint file information if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) # first line saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) print(" [*] Success to read {}".format(os.path.join(checkpoint_dir, ckpt_name))) else: print(" [*] Failed to find a checkpoint") return # stats_graph(tf.get_default_graph()) begin = time.time() for sample_file in tqdm(test_files) : # print('Processing image: ' + sample_file) sample_image = np.asarray(load_test_data(sample_file, img_size)) image_path = os.path.join(result_dir,'{0}'.format(os.path.basename(sample_file))) fake_img = sess.run(test_generated, feed_dict = {test_real : sample_image}) if if_adjust_brightness: save_images(fake_img, image_path, sample_file) else: save_images(fake_img, image_path, None) end = time.time() print(f'test-time: {end-begin} s') print(f'one image test time : {(end-begin)/len(test_files)} s'什么意思
这是一个 Python 函数,该函数接受五个参数:`checkpoint_dir`,`style_name`,`test_dir`,`if_adjust_brightness` 和 `img_size`。该函数使用 TensorFlow 实现了一个测试函数,用于测试训练好的 AnimeGAN V2 模型生成的效果。在函数中,首先使用 `glob` 函数获取测试图片的路径列表,然后使用 TensorFlow 定义了一个占位符 `test_real`,用于输入测试图片。接着,使用 AnimeGAN V2 模型生成器 `generator.G_net` 生成虚假图像 `test_generated`。随后,使用 TensorFlow 定义了一个 Saver 对象,用于从检查点文件中恢复模型。最后,使用 TensorFlow Session 对象运行生成器模型,生成对应的虚假图像,并将其保存到指定的目录中。
其中,如果 `if_adjust_brightness` 为真,则调用 `save_images` 函数保存虚假图像,并调用 `load_test_data` 函数加载测试图片并调整亮度;否则,调用 `save_images` 函数保存虚假图像,但不会调用 `load_test_data` 函数调整亮度。函数还输出了测试的总时间和每张图片测试所需的时间。
with tf.Session() as sess: print("从指定路径中加载模型...") ckpt = tf.train.get_checkpoint_state(logs_train_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print('模型加载成功, 训练的步数为: %s' % global_step) else: print('模型加载失败,checkpoint文件没找到!') prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) 这段是否有问题
根据您提供的代码段,我没有看到明显的错误。但是,为了确保代码的正确性,您可以检查以下几点:
1. 确保缩进是正确的:在Python中,代码块之间的缩进非常重要。请确保"with"语句块和其中的代码具有一致的缩进级别。
2. 确保变量和函数的调用正确:确保您在代码中定义了所有使用的变量(例如`logs_train_dir`、`x`、`image_array`等),并正确地调用了相关函数(例如`saver.restore()`、`sess.run()`等)。
3. 确保模型文件存在:在加载模型之前,确保模型的checkpoint文件存在于指定的路径(`logs_train_dir`)中。
如果您仍然遇到问题,请提供完整的代码以便更详细地检查和帮助您解决问题。
阅读全文