class MUSIC_Dataset(object): def __init__(self, data_root, data_list_file, opt): # self.root = root # root = '/mnt/scratch/hudi/MUSIC/solo' self.opt = opt self.audio_root = os.path.join(data_root, 'audio_frame') self.video_root = os.path.join(data_root, 'video_frame')
时间: 2024-02-16 21:01:55 浏览: 128
这段代码是一个名为MUSIC_Dataset的class的初始化函数(__init__),它有三个参数:data_root、data_list_file和opt。其中,data_root和data_list_file分别指定了音频和视频帧的根目录路径,而opt是一个参数对象,用于存储其他相关参数。
在初始化函数中,self.audio_root变量和self.video_root变量分别表示音频和视频帧的根目录路径。这些变量是通过os.path.join方法将data_root和字符串'audio_frame'或'video_frame'连接而成的。最终,MUSIC_Dataset对象可以通过这两个变量来获取音频和视频帧的路径。
相关问题
class myDataset(Dataset): def __init__(self, csv_file, txt_file, root_dir, other_file): self.csv_data = pd.read_csv(csv_file) with open(txt_file, 'r') as f: data_list = f.readlines() self.txt_data = data_list self.root_dir = root_dir def __ien__(self): return len(self.csv_data) def __getitem__(self, idx): data = (self.csv_data[idx], self.txt_data[idx]) return data
在您提供的代码中,有两个地方出现了错误。
首先,`__ien__` 应该是 `__len__`,表示获取数据集的长度。修正后的代码如下:
```python
import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
data = (self.csv_data.iloc[idx], self.txt_data[idx])
return data
```
其次,在 `__getitem__` 方法中,您正在尝试使用索引访问 `self.csv_data` 和 `self.txt_data`,这样会导致错误。要正确访问数据,请使用 `.iloc` 用于 DataFrame 的索引,以及使用索引访问列表。修正后的代码如下:
```python
import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
data = (self.csv_data.iloc[idx], self.txt_data[idx])
return data
```
这样,您的代码应该能够正常运行了。请注意,我假设您使用了 PyTorch 的 `Dataset` 类来实现您自己的数据集类。如果您使用其他深度学习框架或库,可能需要相应地调整代码。
class myDataset(Dataset): def _init_(self, csv_file, txt_file, root_dir, other_file): self.csv_data = pd.read_csv(csv_file) with open(txt_file, 'r') as f: data_list = f.readlines() self.txt_data = data_list self.root_dir = root_dir def _ien_(self): return len(self.csv_data) def _getitem_(self, idx): data = (self.csv_data[idx], self.txt_data[idx]) return data
您的第一个问题是关于代码中的错误。
在您提供的代码中,有一些拼写错误。`_init_` 应该是 `__init__`,`_ien_` 应该是 `__len__`,`_getitem_` 应该是 `__getitem__`。修正后的代码如下:
```python
import pandas as pd
from torch.utils.data import Dataset
class myDataset(Dataset):
def __init__(self, csv_file, txt_file, root_dir, other_file):
self.csv_data = pd.read_csv(csv_file)
with open(txt_file, 'r') as f:
data_list = f.readlines()
self.txt_data = data_list
self.root_dir = root_dir
def __len__(self):
return len(self.csv_data)
def __getitem__(self, idx):
data = (self.csv_data.iloc[idx], self.txt_data[idx])
return data
```
请注意,我假设您使用了 PyTorch 的 `Dataset` 类来实现您自己的数据集类。如果您使用其他深度学习框架或库,可能需要相应地调整代码。
阅读全文