用python和opencv写一个基于卷积神经网络的疲劳驾驶识别检测+数据集

时间: 2024-02-17 10:03:58 浏览: 161
下面是一个基于卷积神经网络的疲劳驾驶识别检测的Python代码,包括数据集的生成和模型的训练和测试: ``` import cv2 import os import numpy as np from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.utils import to_categorical # 生成数据集 def load_dataset(dataset_path, img_size): # 读取数据集 images = [] labels = [] for foldername in os.listdir(dataset_path): label = int(foldername) folderpath = os.path.join(dataset_path, foldername) for filename in os.listdir(folderpath): imagepath = os.path.join(folderpath, filename) image = cv2.imread(imagepath) image = cv2.resize(image, (img_size, img_size)) images.append(image) labels.append(label) images = np.array(images, dtype=np.float32) / 255.0 labels = np.array(labels, dtype=np.int32) return images, labels # 划分数据集 def split_dataset(images, labels, test_size): x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=test_size, random_state=42) y_train = to_categorical(y_train) y_test = to_categorical(y_test) return x_train, x_test, y_train, y_test # 定义模型 def create_model(img_size, num_classes): model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(img_size, img_size, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model # 训练模型 def train_model(x_train, y_train, x_test, y_test, batch_size, epochs): model = create_model(x_train.shape[1], y_train.shape[1]) model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=epochs, batch_size=batch_size) return model # 测试模型 def test_model(model, images, labels): loss, acc = model.evaluate(images, labels, verbose=0) return acc # 主函数 if __name__ == '__main__': dataset_path = 'dataset' img_size = 32 test_size = 0.2 batch_size = 32 epochs = 10 num_classes = 2 images, labels = load_dataset(dataset_path, img_size) x_train, x_test, y_train, y_test = split_dataset(images, labels, test_size) model = train_model(x_train, y_train, x_test, y_test, batch_size, epochs) acc = test_model(model, x_test, y_test) print('Test accuracy:', acc) ``` 在这个代码中,我们首先使用`load_dataset`函数读取数据集,然后使用`split_dataset`函数划分数据集,接着使用`create_model`函数定义模型,使用`train_model`函数训练模型,最后使用`test_model`函数测试模型。其中,`num_classes`表示数据集中的类别数,本例中为2(疲劳和非疲劳),可以根据实际情况进行修改。 需要注意的是,在运行代码之前,需要先准备好数据集,将疲劳和非疲劳的图像分别放在两个不同的文件夹中,并将这两个文件夹放在一个名为`dataset`的文件夹下。 希望对你有所帮助!
阅读全文

相关推荐

最新推荐

recommend-type

使用卷积神经网络(CNN)做人脸识别的示例代码

在本文中,我们将深入探讨如何使用卷积神经网络(CNN)进行人脸识别。首先,我们需要理解卷积神经网络的基本概念。CNN是一种深度学习模型,特别适用于图像处理任务,因为它能够自动学习和提取图像中的特征。在人脸...
recommend-type

基于python-opencv实现木质工件的污渍和划痕识别和分类

在本项目中,我们探讨了如何使用Python和OpenCV库来实现木质工件的污渍和划痕识别与分类。这个任务是针对传送带上移动的圆形木制品进行的,目标是自动化检测缺陷并进行计数。项目的重点在于两种类型的缺陷:污渍和...
recommend-type

python+opencv实现动态物体识别

动态物体识别是计算机视觉领域中的一个重要技术,它主要用于检测和追踪视频中移动的物体。在这个场景下,我们使用Python和OpenCV库来实现这一功能。OpenCV是一个强大的计算机视觉库,提供了丰富的图像处理和计算机...
recommend-type

基于Python+Open CV的手势识别算法设计

【基于Python+Open CV的手势识别算法设计】 随着人工智能技术的发展,人机交互变得日益重要,手势识别成为了其中的关键技术之一。手势识别广泛应用于手语识别、智能监控、虚拟现实等多个领域,通过摄像头等传感器...
recommend-type

python+opencv轮廓检测代码解析

本篇文章将深入解析如何使用Python结合OpenCV库来实现轮廓检测。 首先,OpenCV是一个强大的开源计算机视觉库,提供了多种图像处理和计算机视觉功能。在进行轮廓检测前,我们需要了解基本的图像处理步骤,包括图片的...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。