import cv2 import numpy as np import matplotlib.pyplot as plt def build_filters(): filters = [] ksize = 9 for theta in np.arange(0, np.pi, np.pi / 8): for sigma in range(1, 6): for frequency in (0.1, 0.2): kernel = cv2.getGaborKernel((ksize, ksize), sigma, theta, frequency, 0.5, 0, ktype=cv2.CV_32F) kernel /= 1.5 * kernel.sum() filters.append(kernel) return filters def process(img, filters): features = np.zeros((img.shape[0], img.shape[1], len(filters)), dtype=np.float32) for i, kernel in enumerate(filters): filtered = cv2.filter2D(img, cv2.CV_8UC3, kernel) features[:, :, i] = filtered return features # 读取图像并转为灰度图 img = cv2.imread('lena.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 构建gabor滤波器组 filters = build_filters() # 对图像进行gabor特征提取 features = process(gray, filters) # 显示gabor滤波后的特征图像 fig, axes = plt.subplots(nrows=5, ncols=8, figsize=(16, 10)) for i, ax in enumerate(axes.flat): ax.imshow(features[:, :, i], cmap='gray') ax.set_xticks([]) ax.set_yticks([]) plt.show()用矩阵将这段代码中特征提取后的图像表示出来
时间: 2024-03-19 15:40:13 浏览: 65
很抱歉,我无法将图像在这里直接显示出来。但是,你可以将代码复制到你的本地环境中运行,然后查看生成的图像。在这段代码中,使用了OpenCV库和NumPy库构建了Gabor滤波器组,然后对图像进行Gabor特征提取,并使用Matplotlib库将每个滤波器返回的特征图像显示出来。features是一个三维数组,其中第一维和第二维表示图像的高度和宽度,第三维是每个滤波器返回的特征图像。所以你可以使用features[:, :, i]来获取第i个特征图像的矩阵表示。
相关问题
如何用python实现基于概率分布的超声图像与自然图像性质差异分析这一课题,需要分析大量图像以确保结果的真实性,超声图像的文件路径是‘D:\zzz\zus2’,自然图像的文件路径是‘D:\zzz\zna2’,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细复杂代码,不使用greycomatrix, greycoprops
这是一个复杂的图像处理问题,需要使用多种图像处理技术和机器学习方法。以下是一个简单的代码示例,用于说明如何从大量超声图像和自然图像中提取特征,并使用概率分布进行差异性分析。
首先,我们需要导入必要的库:
```python
import os
import cv2
import numpy as np
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
```
接下来,我们需要定义一些函数来提取图像的不同特征。在这个示例中,我们将使用颜色直方图、Gabor滤波器和形状描述符。
```python
def color_histogram(image, mask=None, bins=(8, 8, 8)):
hist = cv2.calcHist([image], [0, 1, 2], mask, bins,
[0, 256, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist)
return hist.flatten()
def gabor_filter(image, ksize=(31, 31), sigma=5.0, theta=np.pi/4, lambd=10.0, gamma=0.5):
kernel = cv2.getGaborKernel(ksize, sigma, theta, lambd, gamma)
filtered = cv2.filter2D(image, cv2.CV_8UC3, kernel)
return filtered.flatten()
def shape_descriptor(image):
contours, _ = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contour = max(contours, key=cv2.contourArea)
moments = cv2.moments(contour)
hu_moments = cv2.HuMoments(moments)
return hu_moments.flatten()
```
接下来,我们需要定义一个函数来加载图像并提取所需的特征。
```python
def load_images(path, feature_extractor):
images = []
labels = []
for label, directory in enumerate(os.listdir(path)):
subdirectory = os.path.join(path, directory)
for filename in os.listdir(subdirectory):
filepath = os.path.join(subdirectory, filename)
image = cv2.imread(filepath)
feature = feature_extractor(image)
images.append(feature)
labels.append(label)
return np.array(images), np.array(labels)
```
现在我们可以使用这些函数来加载图像并提取所需的特征。
```python
# Load ultrasound images
ultrasound_path = 'D:\\zzz\\zus2'
ultrasound_images, ultrasound_labels = load_images(ultrasound_path, lambda x: np.concatenate((
color_histogram(x),
gabor_filter(x),
shape_descriptor(cv2.cvtColor(x, cv2.COLOR_BGR2GRAY))
)))
# Load natural images
natural_path = 'D:\\zzz\\zna2'
natural_images, natural_labels = load_images(natural_path, lambda x: np.concatenate((
color_histogram(x),
gabor_filter(x),
shape_descriptor(cv2.cvtColor(x, cv2.COLOR_BGR2GRAY))
)))
```
现在我们可以将数据集拆分为训练集和测试集,并训练一个简单的分类器来区分超声图像和自然图像。
```python
# Combine ultrasound and natural images
images = np.concatenate((ultrasound_images, natural_images))
labels = np.concatenate((ultrasound_labels, natural_labels))
# Shuffle data
images, labels = shuffle(images, labels)
# Split data into train and test sets
x_train, x_test, y_train, y_test = train_test_split(images, labels, test_size=0.2)
# Train a classifier (e.g. SVM)
from sklearn.svm import SVC
classifier = SVC(kernel='linear')
classifier.fit(x_train, y_train)
# Evaluate classifier on test set
accuracy = classifier.score(x_test, y_test)
print('Accuracy:', accuracy)
```
最后,我们可以使用概率分布来比较超声图像和自然图像的特征差异。
```python
# Compute probability distributions for ultrasound and natural images
ultrasound_prob = np.mean(classifier.predict_proba(ultrasound_images), axis=0)
natural_prob = np.mean(classifier.predict_proba(natural_images), axis=0)
# Plot probability distributions
plt.bar(range(2), ultrasound_prob, color='blue', label='Ultrasound')
plt.bar(range(2), natural_prob, color='green', bottom=ultrasound_prob, label='Natural')
plt.xticks(range(2), ('Ultrasound', 'Natural'))
plt.xlabel('Image Type')
plt.ylabel('Probability')
plt.legend()
plt.show()
```
这些代码片段只是一个示例,您可能需要根据您的数据和实际情况进行修改。但是,这应该足以为您提供一个基本的框架来处理这个问题。
用python实现基于概率分布的超声图像与自然图像性质差异分析,不用greycomatrix和greycoprops,使用opencv,两种图像的文件类型都是jpg,超声图像的文件路径是D:\zzz\us5,自然图像的文件路径是D:\zzz\na4,两种图像都有84张,图片形状相同,图像名称是1到84的顺序数,需要对比两种图像的特征必须有颜色,纹理,形状,差异性分析方法也需要多种,包括完整详细最新的代码
以下是一种实现方法,分别使用了颜色直方图、Gabor滤波器和形状匹配进行特征提取和差异性分析:
```python
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 计算颜色直方图
def calc_hist(image):
hist = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
hist = cv2.normalize(hist, hist).flatten()
return hist
# 计算Gabor滤波器响应
def calc_gabor(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filters = []
ksize = 31
for theta in np.arange(0, np.pi, np.pi/4):
kern = cv2.getGaborKernel((ksize, ksize), 4.0, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F)
kern /= 1.5*kern.sum()
filters.append(kern)
feats = []
for kern in filters:
filtered = cv2.filter2D(gray, cv2.CV_8UC3, kern)
feats.append(np.mean(filtered))
feats = np.array(feats)
return feats
# 计算形状匹配得分
def calc_shape(image1, image2):
gray1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
kp1, des1 = sift.detectAndCompute(gray1, None)
kp2, des2 = sift.detectAndCompute(gray2, None)
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
good = []
for m, n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
score = len(good) / min(len(kp1), len(kp2))
return score
# 读取超声图像和自然图像
us_images = []
na_images = []
for i in range(1, 85):
us_image = cv2.imread(f'D:/zzz/us5/{i}.jpg')
na_image = cv2.imread(f'D:/zzz/na4/{i}.jpg')
us_images.append(us_image)
na_images.append(na_image)
# 计算颜色直方图和Gabor滤波器响应
us_feats = []
na_feats = []
for i in range(84):
us_hist = calc_hist(us_images[i])
us_gabor = calc_gabor(us_images[i])
us_feats.append(np.concatenate([us_hist, us_gabor]))
na_hist = calc_hist(na_images[i])
na_gabor = calc_gabor(na_images[i])
na_feats.append(np.concatenate([na_hist, na_gabor]))
us_feats = np.array(us_feats)
na_feats = np.array(na_feats)
# 计算形状匹配得分
shape_scores = []
for i in range(84):
shape_scores.append(calc_shape(us_images[i], na_images[i]))
# 绘制颜色直方图和Gabor滤波器响应的分布图
plt.figure(figsize=(20, 10))
for i in range(24):
plt.subplot(4, 6, i+1)
plt.hist(us_feats[:, i], bins=50, alpha=0.5, label='Ultrasound')
plt.hist(na_feats[:, i], bins=50, alpha=0.5, label='Natural')
plt.title(f'Hist {i+1}')
plt.legend()
# 绘制形状匹配得分的分布图
plt.figure(figsize=(10, 5))
plt.hist(shape_scores, bins=20)
plt.title('Shape Score')
# 计算各特征之间的相关性
corr = np.corrcoef(np.transpose(np.concatenate([us_feats, na_feats])))
plt.figure(figsize=(10, 10))
plt.imshow(corr, cmap='coolwarm')
plt.colorbar()
plt.title('Correlation Matrix')
plt.xticks(np.arange(48), np.arange(1, 49))
plt.yticks(np.arange(48), np.arange(1, 49))
# 计算各特征的差异性指标
us_mean = np.mean(us_feats, axis=0)
na_mean = np.mean(na_feats, axis=0)
us_cov = np.cov(np.transpose(us_feats))
na_cov = np.cov(np.transpose(na_feats))
diff_means = np.abs(us_mean - na_mean)
diff_covs = np.abs(us_cov - na_cov)
diff_feats = np.concatenate([diff_means, np.diag(diff_covs)])
diff_feats /= np.max(diff_feats)
# 打印各特征的差异性指标
feat_names = [f'Hist {i+1}' for i in range(24)] + [f'Gabor {i+1}' for i in range(24)]
for i, diff_feat in enumerate(diff_feats):
print(f'{feat_names[i]}: {diff_feat:.3f}')
# 计算总体差异性指标
diff_total = np.mean(diff_feats) * np.mean(shape_scores)
print(f'Total Diff: {diff_total:.3f}')
```
需要注意的是,这种方法只是一种简单的实现,实际应用时可能需要根据实际情况进行改进和优化。
阅读全文