在.csv数据集中包括固定的房间面积,朝向,日照时长,输入室外最高温,最低温,室内温度,室内人数等数据进行模型预测,利用灰狼优化算法优化该模型,输出温度变化常数,绘制图像
时间: 2023-10-02 16:06:51 浏览: 94
气温数据集(temps.csv)
好的,这是一个比较典型的回归问题。首先,我们需要准备好数据集,并将其分为训练集和测试集。然后,我们可以使用灰狼优化算法来优化模型,并输出温度变化常数。最后,我们可以绘制出模型的预测结果与真实结果之间的比较图像。
以下是一个简单的示例代码,供你参考:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
import math
import matplotlib.pyplot as plt
# 读取数据集
data = pd.read_csv('data.csv')
# 将数据集划分为训练集和测试集
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 数据标准化
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# 定义模型
def predict_temp(X, a, b, c, d, e, f, g):
return a * X[:, 0] + b * X[:, 1] + c * X[:, 2] + d * X[:, 3] + e * X[:, 4] + f * X[:, 5] + g * X[:, 6]
# 定义损失函数(均方误差)
def loss_function(X, y, a, b, c, d, e, f, g):
y_pred = predict_temp(X, a, b, c, d, e, f, g)
return mean_squared_error(y, y_pred)
# 灰狼优化算法
def wolf_optimization(X, y):
# 初始化灰狼群
num_wolves = 10
dim = X.shape[1]
alpha_position = np.zeros(dim)
alpha_score = math.inf
beta_position = np.zeros(dim)
beta_score = math.inf
delta_position = np.zeros(dim)
delta_score = math.inf
positions = np.zeros((num_wolves, dim))
scores = np.zeros(num_wolves)
for i in range(num_wolves):
positions[i] = np.random.rand(dim)
scores[i] = loss_function(X, y, *positions[i])
if scores[i] < alpha_score:
alpha_score = scores[i]
alpha_position = positions[i].copy()
if scores[i] > alpha_score and scores[i] < beta_score:
beta_score = scores[i]
beta_position = positions[i].copy()
if scores[i] > alpha_score and scores[i] > beta_score and scores[i] < delta_score:
delta_score = scores[i]
delta_position = positions[i].copy()
# 开始迭代
num_iterations = 100
a, b, c, d, e, f, g = alpha_position
for it in range(num_iterations):
a1, b1, c1, d1, e1, f1, g1 = alpha_position
a2, b2, c2, d2, e2, f2, g2 = beta_position
a3, b3, c3, d3, e3, f3, g3 = delta_position
for i in range(num_wolves):
for j in range(dim):
A1 = 2 * (1 - (it+1) / num_iterations) * np.random.rand() - 1
C1 = 2 * np.random.rand()
D_alpha = abs(C1 * alpha_position[j] - positions[i][j])
X1 = alpha_position[j] - A1 * D_alpha
A2 = 2 * (1 - (it+1) / num_iterations) * np.random.rand() - 1
C2 = 2 * np.random.rand()
D_beta = abs(C2 * beta_position[j] - positions[i][j])
X2 = beta_position[j] - A2 * D_beta
A3 = 2 * (1 - (it+1) / num_iterations) * np.random.rand() - 1
C3 = 2 * np.random.rand()
D_delta = abs(C3 * delta_position[j] - positions[i][j])
X3 = delta_position[j] - A3 * D_delta
positions[i][j] = (X1 + X2 + X3) / 3
# 更新评分
scores[i] = loss_function(X, y, *positions[i])
if scores[i] < alpha_score:
alpha_score = scores[i]
alpha_position = positions[i].copy()
if scores[i] > alpha_score and scores[i] < beta_score:
beta_score = scores[i]
beta_position = positions[i].copy()
if scores[i] > alpha_score and scores[i] > beta_score and scores[i] < delta_score:
delta_score = scores[i]
delta_position = positions[i].copy()
return alpha_position
# 使用灰狼优化算法进行模型优化
best_params = wolf_optimization(X_train, y_train)
print('Best parameters:', best_params)
# 在测试集上评估模型性能
y_pred = predict_temp(X_test, *best_params)
mse = mean_squared_error(y_test, y_pred)
print('MSE:', mse)
# 绘制真实值和预测值之间的比较图像
plt.scatter(y_test, y_pred)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.show()
```
需要注意的是,上述代码中的模型比较简单,只是简单地将各个特征乘上一个对应的系数相加得到预测结果。在实际应用中,我们可能需要使用更加复杂的模型来提高预测准确度。
阅读全文