if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False这段代码什么意思
时间: 2023-06-08 09:03:44 浏览: 207
这段代码的意思是,如果使用分布式训练,就需要使用分布式采样器DistributedSampler对训练数据集进行采样。然后根据配置文件中的batch_size和分布式训练的进程数来确定每个进程需要处理的批次大小。最后通过is_shuffle参数来确定是否需要对数据集进行随机打乱。
相关问题
def get_train_loader(engine, dataset, s3client=None): data_setting = {'img_root': config.img_root_folder, 'gt_root': config.gt_root_folder, 'hha_root':config.hha_root_folder, 'mapping_root': config.mapping_root_folder, 'train_source': config.train_source, 'eval_source': config.eval_source} train_preprocess = TrainPre(config.image_mean, config.image_std) train_dataset = dataset(data_setting, "train", train_preprocess, config.batch_size * config.niters_per_epoch, s3client=s3client) train_sampler = None is_shuffle = True batch_size = config.batch_size if engine.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) batch_size = config.batch_size // engine.world_size is_shuffle = False train_loader = data.DataLoader(train_dataset, batch_size=batch_size, num_workers=config.num_workers, drop_last=True, shuffle=is_shuffle, pin_memory=True, sampler=train_sampler) return train_loader, train_sampler这段代码是什么意思
这段代码是一个函数,作用是返回一个用于训练的数据加载器和采样器。函数接收三个参数:engine表示训练引擎,dataset表示加载数据的数据集,s3client是一个用于访问AWS S3的客户端对象。
函数内部会根据不同的参数设置对数据进行预处理和组织,并构建一个数据加载器和采样器。其中数据加载器用于返回一个数据集合,用于模型的训练;而采样器用于决定数据加载器中数据的顺序,从而能让训练结果尽可能优秀。
函数中也包含一些特别的代码,例如:如果数据集被分布在多个节点上,则需要使用分布式采样器来组织数据集中的数据,以便高效地并行训练。
if distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True, ) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False, ) batch_size = batch_size // ngpus_per_node shuffle = False else: train_sampler = None val_sampler = None shuffle = True
这段代码的作用是为分布式训练设置数据采样器,并根据是否为分布式训练设置 batch size 和 shuffle。
如果 `distributed` 为真,表示进行分布式训练,需要使用 `DistributedSampler` 来对训练集和验证集进行采样。`DistributedSampler` 会自动将数据划分成多个子集,在每个进程中采样自己的子集,以避免多个进程同时访问同一个数据集的冲突。同时,为了增加数据的随机性,训练集需要进行 shuffle,验证集不需要 shuffle。
如果 `distributed` 为假,表示进行单机训练,不需要采用 `DistributedSampler`,而是直接使用 PyTorch 内置的 `DataLoader` 来生成 batch 数据。此时,训练集和验证集都需要进行 shuffle。
此外,如果进行分布式训练,还需要根据进程数来设置 batch size,因为每个进程只处理部分数据,因此需要将 batch size 缩小到原来的 1/N,其中 N 表示进程数。因此,设置 `batch_size = batch_size // ngpus_per_node`。
阅读全文