advanced office password recov

时间: 2023-04-24 07:04:44 浏览: 50
ery是一款高级办公室密码恢复软件,可以帮助用户恢复丢失或忘记的密码。它支持多种办公软件,如Microsoft Word、Excel、PowerPoint、Outlook等。用户可以使用不同的攻击方法,如字典攻击、暴力攻击、智能攻击等,以找回密码。该软件使用简单,操作方便,是一款非常实用的密码恢复工具。
相关问题

怎么通过matlab完成用于RAID6的RS代码的性能分析

在MATLAB中,可以使用rsenc和rsdec函数来实现Reed-Solomon编码与解码。以下是一个简单的性能分析代码示例: ```matlab % 设置参数 n = 10^6; % 数据块大小 k = 8; % 数据块数量 m = 2; % 校验块数量 t = 2; % 最大容错数 % 生成随机数据 data = randi([0 255], n, k, 'uint8'); % RS编码 tic code = rsenc(data, n, k, 'RS', m); t_enc = toc; % 人为制造两个磁盘的故障 code(1:10, 2) = 0; code(1:10, 5) = 0; % RS解码 tic [data_recov, cnumerr] = rsdec(code, n, k, 'RS', m, t); t_dec = toc; % 性能分析 fprintf('编码时间: %f s\n', t_enc); fprintf('解码时间: %f s\n', t_dec); fprintf('解码错误数: %d\n', cnumerr); ``` 在上述代码中,首先使用randi函数生成随机的数据块,然后使用rsenc函数进行编码,接着手动制造两个磁盘的故障,最后使用rsdec函数进行解码,同时计算编码和解码的时间以及解码错误数。可以根据需要修改参数以及添加更多的性能分析代码。

CycleGAN代码

CycleGAN是一种无监督图像转换算法,可以将一组图像从一个领域转换到另一个领域。以下是使用PyTorch实现CycleGAN的基本代码。 首先,我们需要导入必要的库: ```python import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision.transforms import transforms import matplotlib.pyplot as plt ``` 接下来,我们定义一些超参数: ```python # Hyperparameters batch_size = 1 epochs = 200 learning_rate = 0.0002 image_size = 256 input_nc = 3 # Number of input channels output_nc = 3 # Number of output channels ``` 然后,我们定义生成器和判别器的架构: ```python # Generator architecture class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() # Encoder self.enc1 = nn.Sequential(nn.Conv2d(input_nc, 64, 4, stride=2, padding=1), nn.LeakyReLU(0.2, True)) self.enc2 = nn.Sequential(nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, True)) self.enc3 = nn.Sequential(nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, True)) self.enc4 = nn.Sequential(nn.Conv2d(256, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) self.enc5 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) self.enc6 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) self.enc7 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) self.enc8 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) # Decoder self.dec1 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True)) self.dec2 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True)) self.dec3 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True)) self.dec4 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True)) self.dec5 = nn.Sequential(nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(True)) self.dec6 = nn.Sequential(nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(True)) self.dec7 = nn.Sequential(nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(True)) self.dec8 = nn.Sequential(nn.ConvTranspose2d(64, output_nc, 4, stride=2, padding=1), nn.Tanh()) def forward(self, x): # Encoder enc1 = self.enc1(x) enc2 = self.enc2(enc1) enc3 = self.enc3(enc2) enc4 = self.enc4(enc3) enc5 = self.enc5(enc4) enc6 = self.enc6(enc5) enc7 = self.enc7(enc6) enc8 = self.enc8(enc7) # Decoder dec1 = self.dec1(enc8) dec1 = torch.cat([dec1, enc7], dim=1) dec2 = self.dec2(dec1) dec2 = torch.cat([dec2, enc6], dim=1) dec3 = self.dec3(dec2) dec3 = torch.cat([dec3, enc5], dim=1) dec4 = self.dec4(dec3) dec4 = torch.cat([dec4, enc4], dim=1) dec5 = self.dec5(dec4) dec5 = torch.cat([dec5, enc3], dim=1) dec6 = self.dec6(dec5) dec6 = torch.cat([dec6, enc2], dim=1) dec7 = self.dec7(dec6) dec7 = torch.cat([dec7, enc1], dim=1) dec8 = self.dec8(dec7) return dec8 # Discriminator architecture class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv1 = nn.Sequential(nn.Conv2d(input_nc + output_nc, 64, 4, stride=2, padding=1), nn.LeakyReLU(0.2, True)) self.conv2 = nn.Sequential(nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, True)) self.conv3 = nn.Sequential(nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, True)) self.conv4 = nn.Sequential(nn.Conv2d(256, 512, 4, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True)) self.conv5 = nn.Sequential(nn.Conv2d(512, 1, 4, padding=1), nn.Sigmoid()) def forward(self, x): x = torch.cat([x[:, :input_nc, :, :], x[:, input_nc:, :, :]], dim=1) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) return x ``` 接下来,我们定义损失函数和优化器: ```python # Loss function criterion = nn.MSELoss() # Optimizers G_AB = Generator() G_BA = Generator() D_A = Discriminator() D_B = Discriminator() G_AB_optimizer = torch.optim.Adam(G_AB.parameters(), lr=learning_rate, betas=(0.5, 0.999)) G_BA_optimizer = torch.optim.Adam(G_BA.parameters(), lr=learning_rate, betas=(0.5, 0.999)) D_A_optimizer = torch.optim.Adam(D_A.parameters(), lr=learning_rate, betas=(0.5, 0.999)) D_B_optimizer = torch.optim.Adam(D_B.parameters(), lr=learning_rate, betas=(0.5, 0.999)) ``` 最后,我们定义训练循环: ```python # Train loop for epoch in range(epochs): for i, (real_A, real_B) in enumerate(dataloader): # Set model input real_A = real_A.to(device) real_B = real_B.to(device) # Adversarial ground truths valid = torch.ones((real_A.size(0), 1, image_size // 2 ** 4, image_size // 2 ** 4)).to(device) fake = torch.zeros((real_A.size(0), 1, image_size // 2 ** 4, image_size // 2 ** 4)).to(device) ####################### # Train generators ####################### G_AB_optimizer.zero_grad() G_BA_optimizer.zero_grad() # Identity loss idt_A = G_BA(real_A) loss_idt_A = criterion(idt_A, real_A) * 0.5 * 5.0 idt_B = G_AB(real_B) loss_idt_B = criterion(idt_B, real_B) * 0.5 * 5.0 # GAN loss fake_B = G_AB(real_A) loss_GAN_AB = criterion(D_B(torch.cat((real_A, fake_B), 1)), valid) fake_A = G_BA(real_B) loss_GAN_BA = criterion(D_A(torch.cat((real_B, fake_A), 1)), valid) # Cycle loss recov_A = G_BA(fake_B) loss_cycle_A = criterion(recov_A, real_A) * 10.0 recov_B = G_AB(fake_A) loss_cycle_B = criterion(recov_B, real_B) * 10.0 # Total loss loss_G = loss_GAN_AB + loss_GAN_BA + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B loss_G.backward() G_AB_optimizer.step() G_BA_optimizer.step() ####################### # Train discriminators ####################### D_A_optimizer.zero_grad() D_B_optimizer.zero_grad() # Real loss loss_real_A = criterion(D_A(torch.cat((real_A, real_B), 1)), valid) loss_real_B = criterion(D_B(torch.cat((real_B, real_A), 1)), valid) # Fake loss loss_fake_A = criterion(D_A(torch.cat((real_A, fake_A.detach()), 1)), fake) loss_fake_B = criterion(D_B(torch.cat((real_B, fake_B.detach()), 1)), fake) # Total loss loss_D_A = (loss_real_A + loss_fake_A) * 0.5 loss_D_B = (loss_real_B + loss_fake_B) * 0.5 loss_D = loss_D_A + loss_D_B loss_D.backward() D_A_optimizer.step() D_B_optimizer.step() # Print progress print(f"[Epoch {epoch}/{epochs}] [Batch {i}/{len(dataloader)}] [D loss: {loss_D.item()}] [G loss: {loss_G.item()}]") # Save checkpoints torch.save(G_AB.state_dict(), "gen_AB.pth") torch.save(G_BA.state_dict(), "gen_BA.pth") torch.save(D_A.state_dict(), "disc_A.pth") torch.save(D_B.state_dict(), "disc_B.pth") ``` 这是 CycleGAN 的基本实现。当然,您还可以添加其他功能,如样式迁移,条件生成等,以满足您的需求。

相关推荐

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

matlab基于RRT和人工势场法混合算法的路径规划.zip

matlab基于RRT和人工势场法混合算法的路径规划.zip
recommend-type

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip

matlab基于matlab的两步定位软件定义接收机的开源GNSS直接位置估计插件模块.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。