super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)代码中文含义
时间: 2023-09-25 07:13:54 浏览: 183
OMC_R基本基本资料
这段代码是定义了三个卷积层,分别为一维卷积层self.conv1、三维卷积层self.conv2和一维卷积层self.conv3。
其中,self.conv1的输入通道数为c,输出通道数为dw_channel,卷积核大小为1,不进行padding,步长为1,不进行分组卷积,存在偏置项。
self.conv2的输入通道数和输出通道数都为dw_channel,卷积核大小为3,进行padding,步长为1,进行深度可分离卷积,存在偏置项。
self.conv3的输入通道数为dw_channel,输出通道数为c,卷积核大小为1,不进行padding,步长为1,不进行分组卷积,存在偏置项。
这三个卷积层组成了一个深度可分离卷积模块,用于提取输入数据的特征。
阅读全文