Java代码如何实现经纬度转XY

时间: 2024-03-10 16:45:09 浏览: 159
实现经纬度转XY,需要用到投影算法,这里给出一个Java代码示例,使用的是墨卡托投影算法: ``` public class LatLon2Meters { private static final double EARTH_RADIUS = 6378137; // 地球半径 private static final double MAX_LATITUDE = 85.0511287798; // 最大纬度 public static double[] latLonToMeters(double latitude, double longitude) { double[] xy = new double[2]; xy[0] = longitude * EARTH_RADIUS * Math.PI / 180; // X轴 xy[1] = Math.log(Math.tan((90 + latitude) * Math.PI / 360)) / (Math.PI / 180); xy[1] = xy[1] * EARTH_RADIUS * Math.PI / 180; // Y轴 return xy; } } ``` 其中,`latitude`和`longitude`分别代表要转换的经纬度,返回的`xy`是一个长度为2的数组,表示转换后的XY坐标。请注意,由于墨卡托投影算法是一个近似算法,因此转换后的坐标并不是精确的,但是可以满足大部分应用场景的需求。
相关问题

java代码实现cgcs2000大地坐标系xy值转化为对应经纬度

Java代码示例如下: ```java import org.apache.commons.math3.geometry.euclidean.threed.Vector3D; public class CoordinateConverter { private static final double a = 6378137; // 长半轴 private static final double b = 6356752.3142; // 短半轴 private static final double f = (a - b) / a; // 扁率 private static final double e1 = Math.sqrt(2 * f - f * f); // 第一偏心率 private static final double e2 = Math.sqrt((a * a - b * b) / (b * b)); // 第二偏心率 public static Vector3D convertXYToLatLon(double x, double y) { // 投影坐标转换为大地坐标 double Bf0 = x / a; double Nf0 = (Math.pow(a, 2) / b) / Math.sqrt(1 + Math.pow(e2, 2) * Math.pow(Math.cos(Bf0), 2)); double Mf0 = a * (1 - Math.pow(e1, 2)) / Math.pow(Math.sqrt(1 - Math.pow(e1, 2) * Math.pow(Math.sin(Bf0), 2)), 3); double nf = Math.sqrt(1 + Math.pow(e2, 2) * Math.pow(Math.cos(Bf0), 2)); double etaf = e2 * Math.cos(Bf0); double T1f = Math.pow(Math.tan(Bf0), 2); double C1f = Math.pow(e1, 2) * Math.pow(Math.cos(Bf0), 2); double R = a * (1 - Math.pow(e1, 2)) / Math.pow(Math.sqrt(1 - Math.pow(e1, 2) * Math.pow(Math.sin(Bf0), 2)), 2); double latitude = Bf0 - (Nf0 * Math.tan(Bf0) / Mf0) * (Math.pow(x, 2) / (2 * R)) + (Nf0 * Math.tan(Bf0) / (24 * Mf0 * Mf0 * Mf0)) * ((5 + 3 * T1f + 10 * C1f - 4 * C1f * C1f - 9 * etaf * etaf) * Math.pow(x, 4) / 24 - (61 + 90 * T1f + 298 * C1f + 45 * T1f * T1f - 252 * etaf * etaf - 3 * C1f * C1f) * Math.pow(x, 6) / 720); double longitude = (x / (nf * Mf0 * Math.cos(Bf0)) - (1 + 2 * T1f + C1f) * Math.pow(x, 3) / (6 * nf * nf * nf * Mf0 * Math.pow(Math.cos(Bf0), 3)) + (5 + 28 * T1f + 24 * T1f * T1f + 6 * C1f + 8 * etaf * etaf) * Math.pow(x, 5) / (120 * Math.pow(nf, 5) * Mf0 * Math.pow(Math.cos(Bf0), 5))) / Math.cos(Bf0); return new Vector3D(Math.toDegrees(latitude), Math.toDegrees(longitude), y); } public static void main(String[] args) { double x = 1000000; // x坐标 double y = 2000000; // y坐标 Vector3D latLon = convertXYToLatLon(x, y); System.out.printf("经度:%f, 纬度:%f, 高程:%f", latLon.getY(), latLon.getX(), latLon.getZ()); } } ``` 该代码实现了cgcs2000大地坐标系的xy值转化为对应经纬度。在代码中,首先定义了大地坐标系相关参数,如长半轴、短半轴、扁率、偏心率等。然后通过投影坐标转换为大地坐标的公式,计算出经度、纬度和高程,并将结果返回。在main方法中,我们可以指定xy坐标,然后调用转换函数,将结果输出为经度、纬度和高程。

地理信息 54经纬度坐标124.793263,46.26888194 转 54坐标

54坐标系是中国新的统一的大地坐标系,其投影方式是横轴为高斯-克吕格投影,纵轴为墨卡托投影。54坐标系是一种平面直角坐标系,以米为单位,与WGS84坐标系之间可以通过转换公式进行转换。下面是将WGS84坐标系中的经纬度坐标转换为54坐标系的Java代码示例: ```java public class CoordinateTransform { private static final double A = 6378137.0; // 长半轴 private static final double B = 6356752.3142; // 短半轴 private static final double L0 = 121.0; // 中央经线 private static double rad(double degree) { return degree * Math.PI / 180.0; } public static double[] WGS84To54(double lng, double lat) { double L = rad(lng); double B = rad(lat); double L0 = rad(CoordinateTransform.L0); double e2 = 1 - (B / A) * (B / A); double N = A / Math.sqrt(1 - e2 * Math.sin(B) * Math.sin(B)); double T = Math.tan(B) * Math.tan(B); double C = e2 * Math.cos(B) * Math.cos(B); double A1 = (L - L0) * Math.cos(B); double A2 = (L - L0) * (L - L0) * Math.cos(B) * Math.cos(B) * Math.cos(B) * (1 - T + C) / 6.0; double A3 = (L - L0) * (L - L0) * (L - L0) * Math.cos(B) * Math.cos(B) * Math.cos(B) * Math.cos(B) * (5 - 18 * T + T * T + 72 * C - 58 * e2) / 120.0; double X = 1000000 + N * A1 + 500000 * Math.sin(B) * Math.cos(B) * (A2 + A3); double Y = 1000000 + N * B * Math.cos(B) * (1 + (A1 * A1) / 2.0 + (1 - T + C) * (A2 * A2) / 24.0 + (5 - 4 * T + 14 * C + 13 * C * C - 28 * T * C) * (A3 * A3) / 720.0); return new double[]{X, Y}; } } ``` 使用方法: ```java double lng = 124.793263; double lat = 46.26888194; double[] xy = CoordinateTransform.WGS84To54(lng, lat); System.out.println("54坐标系 X 坐标:" + xy[0]); System.out.println("54坐标系 Y 坐标:" + xy[1]); ``` 其中,`A` 和 `B` 分别为 WGS84 椭球体的长半轴和短半轴,`L0` 为中央经线经度,`e2` 为椭球体第一偏心率的平方,`N` 为子午线曲率半径,`T` 和 `C` 分别为一、二次纬度变形参数,`X` 和 `Y` 为计算得到的54坐标系的 X 和 Y 坐标。
阅读全文

相关推荐

最新推荐

recommend-type

java 根据经纬度获取地址实现代码

总的来说,这段代码提供了一个简单的示例,演示了如何利用Java调用阿里云地图API从经纬度获取地址信息,并进行基本的JSON解析。然而,在实际应用中,需要考虑更多的细节和异常情况,以确保代码的健壮性和高效性。
recommend-type

Python 利用高德地图api实现经纬度与地址的批量转换

将以上函数整合到一个完整的脚本中,可以实现批量读取经纬度数据,然后进行逆地理编码,将经纬度转换为地址。需要注意的是,由于API请求可能有频率限制,因此在实际应用中可能需要添加延时或其他策略来避免过快的...
recommend-type

java实现根据ip地址获取地理位置的代码分享

本篇文章将分享一个利用Java实现根据IP地址获取地理位置的简单示例,主要使用了QQ在线接口,同时提到了其他如新浪、淘宝等提供的接口作为替代选项。 首先,我们来看一下核心的Java代码。这段代码定义了一个`...
recommend-type

Java编程实现轨迹压缩之Douglas-Peucker算法详细代码

本资源摘要信息提供了Java编程实现轨迹压缩之Douglas-Peucker算法的详细代码,包括问题描述、数据预处理、Douglas-Peucker轨迹压缩算法、点到直线的距离、平均误差求解、压缩率求解、数据结果文件的生成、代码实现等...
recommend-type

java实现计算地理坐标之间的距离

以下是如何使用Java实现这一功能的详细解释: 首先,我们注意到这段代码定义了一个名为`GeoUtils`的类,该类包含两个静态方法:`getDistance()`和`getDirAngle()`。这两个方法都是为了处理地理坐标系中的点的计算。...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。