用Python写一个随机森林回归的REFCV算法,用RMSE作为筛选变量的标准,并将结果进行可视化
时间: 2024-05-15 11:15:45 浏览: 199
由于REFCV算法需要进行交叉验证,为了方便起见,我们可以使用scikit-learn库中的RandomForestRegressor和RFECV类来实现。
首先,导入所需的库和数据集:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import RFECV
from sklearn.model_selection import train_test_split
# 导入数据集
data = pd.read_csv('data.csv')
```
接下来,将数据集划分为训练集和测试集,并定义随机森林回归模型:
```python
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.2, random_state=0)
# 定义随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
```
然后,使用RFECV类来进行REFCV算法,以RMSE作为筛选变量的标准:
```python
# 定义RFECV类,并以RMSE作为筛选变量的标准
rfecv = RFECV(estimator=rf, step=1, cv=5, scoring='neg_mean_squared_error')
# 进行REFCV算法
rfecv.fit(X_train, y_train)
```
最后,我们可以将结果进行可视化,以便更好地理解REFCV算法的结果:
```python
# 可视化REFCV算法结果
plt.figure()
plt.xlabel('Number of features selected')
plt.ylabel('Cross validation score (RMSE)')
plt.plot(range(1, len(rfecv.grid_scores_) + 1), np.sqrt(-rfecv.grid_scores_))
plt.show()
```
完整代码如下:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import RFECV
from sklearn.model_selection import train_test_split
# 导入数据集
data = pd.read_csv('data.csv')
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data.iloc[:, -1], test_size=0.2, random_state=0)
# 定义随机森林回归模型
rf = RandomForestRegressor(n_estimators=100, random_state=0)
# 定义RFECV类,并以RMSE作为筛选变量的标准
rfecv = RFECV(estimator=rf, step=1, cv=5, scoring='neg_mean_squared_error')
# 进行REFCV算法
rfecv.fit(X_train, y_train)
# 可视化REFCV算法结果
plt.figure()
plt.xlabel('Number of features selected')
plt.ylabel('Cross validation score (RMSE)')
plt.plot(range(1, len(rfecv.grid_scores_) + 1), np.sqrt(-rfecv.grid_scores_))
plt.show()
```
输出结果为一张图,横坐标为选择的特征数目,纵坐标为交叉验证得分的RMSE值。我们可以根据这个图来选择最佳的特征数目。
阅读全文