用python实现的决策树算法

时间: 2023-07-20 17:32:31 浏览: 44
好的,下面是用Python实现的决策树算法,以ID3算法为例: ```python import numpy as np from collections import Counter class ID3DecisionTree: def __init__(self, max_depth=None): self.max_depth = max_depth def fit(self, X, y): self.n_features_ = X.shape[1] self.tree_ = self._grow_tree(X, y) def predict(self, X): return [self._predict(inputs) for inputs in X] def _predict(self, inputs): node = self.tree_ while node.is_leaf_node() == False: if inputs[node.feature_] <= node.threshold_: node = node.left_ else: node = node.right_ return node.value_ def _grow_tree(self, X, y, depth=0): num_samples_per_class = [np.sum(y == i) for i in range(len(set(y)))] predicted_class = np.argmax(num_samples_per_class) node = Node(predicted_class=predicted_class) if depth < self.max_depth: feature, threshold = self._best_split(X, y) if feature is not None: indices_left = X[:, feature] <= threshold X_left, y_left = X[indices_left], y[indices_left] X_right, y_right = X[~indices_left], y[~indices_left] node = Node(feature=feature, threshold=threshold) node.left_ = self._grow_tree(X_left, y_left, depth+1) node.right_ = self._grow_tree(X_right, y_right, depth+1) return node def _best_split(self, X, y): best_gain = -1 split_feature, threshold = None, None n_samples, n_features = X.shape entropy_parent = self._entropy(y) for feature in range(n_features): thresholds = np.unique(X[:, feature]) for threshold in thresholds: gain = self._information_gain(X, y, feature, threshold, entropy_parent) if gain > best_gain: best_gain = gain split_feature = feature split_threshold = threshold return split_feature, split_threshold def _information_gain(self, X, y, split_feature, split_threshold, entropy_parent): indices_left = X[:, split_feature] <= split_threshold y_left, y_right = y[indices_left], y[~indices_left] entropy_left = self._entropy(y_left) entropy_right = self._entropy(y_right) n_total = len(y_left) + len(y_right) weight_left, weight_right = len(y_left) / n_total, len(y_right) / n_total information_gain = entropy_parent - (weight_left*entropy_left + weight_right*entropy_right) return information_gain def _entropy(self, y): _, counts = np.unique(y, return_counts=True) probabilities = counts / np.sum(counts) entropy = np.sum(probabilities * -np.log2(probabilities)) return entropy class Node: def __init__(self, feature=None, threshold=None, predicted_class=None): self.feature_ = feature self.threshold_ = threshold self.predicted_class_ = predicted_class self.left_ = None self.right_ = None def is_leaf_node(self): return self.predicted_class_ is not None @property def value_(self): return self.predicted_class_ ``` 以上代码中,首先定义了一个ID3DecisionTree类,初始化时可以传入最大深度。fit方法用于训练模型,传入训练数据集X和标签y。predict方法用于预测,传入测试数据集X,返回预测结果。_grow_tree方法用于生长决策树,传入当前节点的数据集X和标签y,以及当前树的深度depth。_predict方法用于对于单个样本进行预测。_best_split方法用于找到最佳分裂特征和阈值。_information_gain方法用于计算信息增益。_entropy方法用于计算熵。Node类用于表示决策树的节点,其中包含属性feature_、threshold_、predicted_class_、left_和right_,分别表示特征、阈值、预测类别、左子树和右子树。

相关推荐

最新推荐

recommend-type

决策树剪枝算法的python实现方法详解

主要介绍了决策树剪枝算法的python实现方法,结合实例形式较为详细的分析了决策树剪枝算法的概念、原理并结合实例形式分析了Python相关实现技巧,需要的朋友可以参考下
recommend-type

Python机器学习之决策树算法实例详解

主要介绍了Python机器学习之决策树算法,较为详细的分析了实例详解机器学习中决策树算法的概念、原理及相关Python实现技巧,需要的朋友可以参考下
recommend-type

python使用sklearn实现决策树的方法示例

主要介绍了python使用sklearn实现决策树的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

基于ID3决策树算法的实现(Python版)

下面小编就为大家带来一篇基于ID3决策树算法的实现(Python版)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

z-blog模板网站导航网站源码 带后台管理.rar

z-blog模板网站导航网站源码 带后台管理.rarz-blog模板网站导航网站源码 带后台管理.rar
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。