python操作数据库时,若cursor.execute(sql)用sql语句清空数据后使用 df_upload.to_sql(upload_name, engine, if_exists="append", index=False)追加数据,实现中途出错即rollback

时间: 2024-02-27 17:58:20 浏览: 144
如果在执行 `cursor.execute(sql)` 后,出现了错误,需要进行 rollback 操作,可以使用以下代码实现: ```python import sqlalchemy engine = sqlalchemy.create_engine('数据库连接字符串') # 连接数据库 conn = engine.connect() trans = conn.begin() try: # 执行清空数据的 sql 语句 cursor.execute(sql) # 执行追加数据的操作 df_upload.to_sql(upload_name, engine, if_exists="append", index=False) # 提交事务 trans.commit() except: # 回滚事务 trans.rollback() finally: # 关闭数据库连接 conn.close() ``` 其中,我们使用了 SQLAlchemy 库连接数据库,并使用 `conn.begin()` 开启事务,如果在事务执行过程中出现错误,就会执行 `trans.rollback()` 进行回滚,否则执行 `trans.commit()` 提交事务。这样可以保证数据的一致性和完整性。
相关问题

sqlalchemy实现python操作数据库时,若cursor.execute(sql)用sql语句清空数据后使用 df_upload.to_sql(upload_name, engine, if_exists="append", index=False)追加数据,实现中途出错即rollback

在使用`sqlalchemy`操作数据库时,可以使用上下文管理器`with`来实现自动提交或回滚事务。在这种情况下,如果在清空数据之后执行`df_upload.to_sql()`方法时出现错误,则会自动回滚并撤销对数据库的更改。 下面是一个示例代码: ``` from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.exc import IntegrityError engine = create_engine('mysql+pymysql://username:password@host:port/dbname') Session = sessionmaker(bind=engine) # 创建数据库会话 with Session() as session: # 开始事务 with session.begin(): try: # 清空数据 session.execute('TRUNCATE TABLE table_name') # 追加数据 df_upload.to_sql(upload_name, engine, if_exists="append", index=False) except IntegrityError as e: # 出现错误时回滚事务 session.rollback() print(f"Error: {str(e)}") except Exception as e: # 其他异常时也回滚事务 session.rollback() print(f"Error: {str(e)}") else: # 没有出现错误时提交事务 session.commit() print("Data uploaded successfully.") ``` 在上面的代码中,我们首先创建了一个`Session`对象,并将其绑定到数据库引擎上。然后使用`with`语句创建了一个数据库会话。在这个会话中,我们使用`with session.begin()`语句开始了一个事务。在事务中,我们首先清空了数据表,然后使用`df_upload.to_sql()`方法追加数据。如果出现了`IntegrityError`异常(比如插入了重复的数据),则会回滚事务并输出错误信息。如果没有出现异常,则会提交事务并输出成功信息。

请问以下代码有何问题? try: db = pymysql.Connect(host='10.32.158.162', port=3306, user='dscuser', passwd='dscuser_123', db='COST') if y == "岗位费用": df_upload = pd.melt(df_upload, id_vars=['project', 'role'], value_vars=["2023", "2024", "2025", "2026", "2027", "2028", "2029", "上一版"], var_name='year', value_name='value') elif y == "年度项目月份工时": df_upload = pd.melt(df_upload, id_vars=['Project', 'Function'], value_vars=temp, var_name='year', value_name='value') df_upload = df_upload.dropna() df_upload = df_upload.drop_duplicates() df_upload = df_upload[(df_upload['value'] != 0) & (df_upload['value'].notna())] else: sql = "delete from COST.{} where project = '{}';".format(upload_name, project_name) cursor = db.cursor() cursor.execute(sql) # db.commit() # db.close() col_names = list(df_upload) for col in col_names: df_upload[col] = df_upload[col].astype('string', copy=False) df_upload.to_sql(upload_name, engine, if_exists="append", index=False) else: # db.commit() # db.close() error = error msg = "" except Exception as e: db.rollback() msg = str(e)[0:100] else: db.commit() finally: db.close()

这段代码存在一些问题: 1. 引入的库`pandas`和`pymysql`没有看到在哪里导入,需要在代码开头进行导入。 2. 在执行SQL语句时,没有使用参数化查询,容易出现SQL注入漏洞。应该使用参数化查询,例如使用`cursor.execute(sql, params)`方法。其中`params`是一个元组或字典类型,用于替换SQL语句中的参数。 3. 在`try`语句块中,如果`y`不等于"岗位费用"和"年度项目月份工时",则会执行`else`语句块,但是该语句块中没有对`df_upload`进行处理,会导致后面的代码出现错误。 4. 在`else`语句块中,如果使用`cursor`对象进行数据库操作,则应该在操作完成后调用`cursor.close()`方法释放资源。 5. 在`except`语句块中,`error = error`这行代码没有实际作用,应该删除。 下面是修改后的代码: ``` import pandas as pd import pymysql try: db = pymysql.Connect(host='10.32.158.162', port=3306, user='dscuser', passwd='dscuser_123', db='COST') if y == "岗位费用": df_upload = pd.melt(df_upload, id_vars=['project', 'role'], value_vars=["2023", "2024", "2025", "2026", "2027", "2028", "2029", "上一版"], var_name='year', value_name='value') elif y == "年度项目月份工时": df_upload = pd.melt(df_upload, id_vars=['Project', 'Function'], value_vars=temp, var_name='year', value_name='value') df_upload = df_upload.dropna() df_upload = df_upload.drop_duplicates() df_upload = df_upload[(df_upload['value'] != 0) & (df_upload['value'].notna())] else: sql = "delete from COST.{} where project = %s;".format(upload_name) cursor = db.cursor() cursor.execute(sql, (project_name,)) cursor.close() col_names = list(df_upload) for col in col_names: df_upload[col] = df_upload[col].astype('string', copy=False) df_upload.to_sql(upload_name, engine, if_exists="append", index=False) except Exception as e: db.rollback() msg = str(e)[0:100] else: db.commit() finally: db.close() ``` 在上面的代码中,我们首先导入了`pandas`和`pymysql`库。在`try`语句块中,我们首先创建了一个数据库连接`db`,然后根据不同的条件对`df_upload`进行处理。如果`y`等于"岗位费用",则使用`pd.melt()`方法进行数据重构。如果`y`等于"年度项目月份工时",则使用`pd.melt()`方法和`temp`变量进行数据重构。然后对数据进行清洗,去除空值和重复值,以及`value`列中的0值和空值。 如果`y`不等于"岗位费用"和"年度项目月份工时",则执行`else`语句块。在该语句块中,我们使用参数化查询的方式执行SQL语句,避免了SQL注入漏洞。然后将`df_upload`中的数据类型转换为字符串类型,并使用`df_upload.to_sql()`方法将数据写入数据库。 在`except`语句块中,如果出现异常,则会回滚事务并输出错误信息。在`else`语句块中,如果没有出现异常,则会提交事务。最后在`finally`语句块中,关闭数据库连接。
阅读全文

相关推荐

最新推荐

recommend-type

Python Sql数据库增删改查操作简单封装

本文将详细介绍如何使用Python对SQL数据库执行基本的增删改查(CRUD)操作,并提供相关的代码封装示例。以下是对给定内容的详细解释: 1. **Insert**: `insert`函数用于插入数据到数据库中的指定表。它接受两个...
recommend-type

用Python将Excel数据导入到SQL Server的例子

标题中的例子展示了如何使用Python将Excel数据导入到SQL Server数据库中。这个操作在数据分析和数据管理中非常常见,特别是当需要处理大量结构化的表格数据时。以下是对该过程的详细说明: 1. **Python环境与库**:...
recommend-type

Python MySQLdb 执行sql语句时的参数传递方式

在Python中进行数据库操作,MySQLdb库是一个常用的与MySQL数据库交互的模块。本文将详细讲解在使用MySQLdb执行SQL语句时的参数传递方式。 首先,我们来看一下不传递参数的情况。当SQL语句中不需要任何参数时,可以...
recommend-type

Python使用cx_Oracle模块操作Oracle数据库详解

Python中的cx_Oracle模块是用于连接和操作Oracle数据库的一个强大工具。它允许Python开发者通过标准的DB-API 2.0接口来与Oracle数据库进行交互,实现了包括查询、插入、更新和删除在内的各种数据库操作。 首先,要...
recommend-type

SQL Server 中 EXEC 与 SP_EXECUTESQL 的区别.doc

在SQL Server中,动态执行SQL语句有两个主要的命令:`EXEC`和`SP_EXECUTESQL`。两者都用于在运行时执行SQL语句,但它们之间存在显著的区别。 一、EXEC `EXEC`命令可以执行存储过程或者动态SQL语句。当我们需要执行...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。