computer vision: algorithms and applications pdf

时间: 2023-06-05 11:47:26 浏览: 64
《计算机视觉:算法与应用》是一本介绍计算机视觉算法和应用的著作。计算机视觉是一项应用于计算机科学和人工智能领域的技术,旨在使计算机能够理解和解释数字图像和视频,并从中获取有用的信息。这本书提供了计算机视觉的一些基本原理和算法,从图片处理开始,包括图片特征提取、对象识别、图像分割等领域,并介绍了常见的技术和应用,例如人脸识别、行动识别,车牌识别等。此外,本书也提供了很多实践案例,比如使用OpenCV库处理图片、视频等。总体而言,这本书是一本深入浅出的计算机视觉的入门教程,既适合初学者掌握计算机视觉的基础知识,也适合有一定经验的开发者使用作为参考书籍。
相关问题

计算机视觉与图像处理相关书籍

以下是一些计算机视觉和图像处理方面的经典书籍: 1. 《数字图像处理(Digital Image Processing)》- Rafael C. Gonzalez 和 Richard E. Woods 2. 《计算机视觉:模型、学习和推理(Computer Vision: Models, Learning, and Inference)》- Simon J.D. Prince 3. 《计算机视觉:算法与应用(Computer Vision: Algorithms and Applications)》- Richard Szeliski 4. 《机器视觉(Machine Vision)》- Ramesh Jain, Rangachar Kasturi 和 Brian G. Schunck 5. 《多视角几何(Multiple View Geometry in Computer Vision)》- Richard Hartley 和 Andrew Zisserman 6. 《数字图像处理和计算机视觉:简洁版(An Introduction to Digital Image Processing and Computer Vision: A Concise Introduction)》- Ahuja 和 Peterson 7. 《视觉SLAM:从理论到实践(Visual SLAM: From Theory to Practice)》- Davide Scaramuzza 和 Friedrich Fraundorfer 这些书籍都是非常优秀的资源,可以让你深入了解计算机视觉和图像处理的领域。

我想学习NeRF和位姿估计,你有什么书推荐给我

NeRF(Neural Radiance Fields)和位姿估计(pose estimation)都是计算机视觉领域的热门研究方向,如果您想学习这些内容,以下是我为您推荐的一些书籍: 1.《3D Computer Vision: A Mathematical Introduction with OpenCV》 作者:Jan Erik Solem 这本书提供了一个深入的介绍,介绍了如何使用计算机视觉技术来重建3D场景和识别3D物体。其中包括位姿估计、结构从运动、稠密重建等内容。 2.《Computer Vision: Algorithms and Applications》 作者:Richard Szeliski 这本书是计算机视觉领域的经典教材,涵盖了计算机视觉的多个方面,包括摄像机模型、图像处理、特征提取、视觉匹配、3D重建和姿态估计等内容。 3.《Deep Learning for 3D Computer Vision》 作者:Wojciech Samek、Thomas Wiegand、Klaus-Robert Müller 这本书专门介绍了深度学习在3D计算机视觉中的应用。其中包括NeRF等技术的详细解释,以及如何使用深度学习方法进行位姿估计、3D目标检测等内容。 4.《Multiple View Geometry in Computer Vision》 作者:Richard Hartley、Andrew Zisserman 这本书是多视角几何中的经典教材,涵盖了计算机视觉领域的许多重要技术,包括摄像机模型、单应性矩阵、三角剖分等内容。 希望这些书籍能够帮助您深入学习NeRF和位姿估计。

相关推荐

3D视觉是计算机视觉的终极体现形式,它在智能制造、自动驾驶、AR/VR、SLAM、无人机、三维重建、人脸识别等领域取得了优异的效果。然而,由于3D视觉的算法建模和环境依赖等问题,它一直处于正在研究的前沿。因此,对于初学者来说,学习3D视觉可能会面临一些挑战。 目前关于3D视觉的书籍和论文比较零散,初学者很难掌握关键知识点,也难以真正理解一些算法。为了更好地入门且系统化学习3D视觉,可以参考一些资源。例如,在「3D视觉工坊」公众号后台回复"3D视觉github资源汇总",可以下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的3D检测、6D姿态估计源码等。\[3\] 此外,还可以参考一些经典的教材和学习资料,如《Multiple View Geometry in Computer Vision》、《Computer Vision: Algorithms and Applications》等。这些教材会介绍3D视觉的基本原理、算法和应用,并提供一些实践项目和代码示例,帮助初学者更好地理解和应用3D视觉技术。 总之,要从入门到精通3D视觉,需要系统地学习相关的理论知识和算法,并进行实践项目的探索。通过参考资源和教材,以及积极实践和交流,可以逐步提升自己在3D视觉领域的技能和理解。 #### 引用[.reference_title] - *1* *2* [3D视觉工坊中秋国庆贺礼!](https://blog.csdn.net/Yong_Qi2015/article/details/108898575)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [3D视觉基础(基本原理及3D传感器基本参数)](https://blog.csdn.net/Yong_Qi2015/article/details/108271554)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
In the position of Senior Algorithm Architect of China Unicom Network AI Center, the individual is responsible for managing the center's algorithm and big data teams. Their responsibilities include the following three aspects: 1. Building algorithm platform and library to provide a wealth of algorithms such as time series prediction, anomaly detection, image recognition, text analysis, general classification prediction, and big data feature data warehouse to support the communication business scenarios. 2. Building a communication network topology based on knowledge graphs, using graph algorithm models to develop intelligent troubleshooting, intelligent network resource matching, and ChatOPS applications. 3. Conducting technology research in the field of communication network such as mobile network, broadband services, using artificial intelligence technology to form capabilities such as intelligent inspection, automated anomaly detection in the field of computer vision, time series anomaly detection, signal positioning, and traffic analysis, and landing them in actual business scenarios. Achievements: 1. Formed a time series prediction operator library based on deep learning such as DeepAR, Nbeats, Dlinear, with a general communication network KPI time series prediction accuracy of MAPE within 20%, and monthly call volume of over one billion; 2. Completed the construction of a unified large model for user portrait tagging, with F1-Score above 0.4 and monthly call volume of 200 million; 3. Launched an intelligent inspection system that has OCR recognition, traditional instrument reading, and equipment detection capabilities, with an average ACC of 90%.
pdf
OpenCV 3 is a state-of-the-art computer vision library that allows a great variety of image and video processing operations. Some of the more spectacular and futuristic features such as face recognition or object tracking are easily achievable with OpenCV 3. Learning the basic concepts behind computer vision algorithms, models, and OpenCV’s API will enable the development of all sorts of real-world applications, including security and surveillance. Starting with basic image processing operations, the book will take you through to advanced computer vision concepts. Computer vision is a rapidly evolving science whose applications in the real world are exploding, so this book will appeal to computer vision novices as well as experts of the subject wanting to learn the brand new OpenCV 3.0.0. You will build a theoretical foundation of image processing and video analysis, and progress to the concepts of classification through machine learning, acquiring the technical know-how that will allow you to create and use object detectors and classifiers, and even track objects in movies or video camera feeds. Finally, the journey will end in the world of artificial neural networks, along with the development of a hand-written digits recognition application. What You Will Learn Install and familiarize yourself with OpenCV 3’s Python API Grasp the basics of image processing and video analysis Identify and recognize objects in images and videos Detect and recognize faces using OpenCV Train and use your own object classifiers Learn about machine learning concepts in a computer vision context Work with artificial neural networks using OpenCV Develop your own computer vision real-life application
pdf
原pdf书签不正常(非发行版pdf),2016.02.16本人对书签进行了修正。 Paperback: 296 pages Publisher: Packt Publishing - ebooks Account (September 2015) Language: English ISBN-10: 1785283936 ISBN-13: 978-1785283932 Build real-world computer vision applications and develop cool demos using OpenCV for Python About This Book Learn how to apply complex visual effects to images using geometric transformations and image filters Extract features from an image and use them to develop advanced applications Build algorithms to help you understand the image content and perform visual searches Who This Book Is For This book is intended for Python developers who are new to OpenCV and want to develop computer vision applications with OpenCV-Python. This book is also useful for generic software developers who want to deploy computer vision applications on the cloud. It would be helpful to have some familiarity with basic mathematical concepts such as vectors, matrices, and so on. What You Will Learn Apply geometric transformations to images, perform image filtering, and convert an image into a cartoon-like image Detect and track various body parts such as the face, nose, eyes, ears, and mouth Stitch multiple images of a scene together to create a panoramic image Make an object disappear from an image Identify different shapes, segment an image, and track an object in a live video Recognize an object in an image and build a visual search engine Reconstruct a 3D map from images Build an augmented reality application
pdf
Build real-world computer vision applications and develop cool demos using OpenCV for Python, About This Book, Learn how to apply complex visual effects to images using geometric transformations and image filtersExtract features from an image and use them to develop advanced applicationsBuild algorithms to help you understand the image content and perform visual searches, Who This Book Is For, This book is intended for Python developers who are new to OpenCV and want to develop computer vision applications with OpenCV-Python. This book is also useful for generic software developers who want to deploy computer vision applications on the cloud. It would be helpful to have some familiarity with basic mathematical concepts such as vectors, matrices, and so on., What You Will Learn, Apply geometric transformations to images, perform image filtering, and convert an image into a cartoon-like imageDetect and track various body parts such as the face, nose, eyes, ears, and mouthStitch multiple images of a scene together to create a panoramic imageMake an object disappear from an imageIdentify different shapes, segment an image, and track an object in a live videoRecognize an object in an image and build a visual search engineReconstruct a 3D map from imagesBuild an augmented reality application, In Detail, Computer vision is found everywhere in modern technology. OpenCV for Python enables us to run computer vision algorithms in real time. With the advent of powerful machines, we are getting more processing power to work with. Using this technology, we can seamlessly integrate our computer vision applications into the cloud. Web developers can develop complex applications without having to reinvent the wheel., This book will walk you through all the building blocks needed to build amazing computer vision applications with ease. We start off with applying geometric transformations to images. We then discuss affine and projective transformations and see how we can use them to apply cool geometric effects to photos. We will then cover techniques used for object recognition, 3D reconstruction, stereo imaging, and other computer vision applications., This book will also provide clear examples written in Python to build OpenCV applications. The book starts off with simple beginner's level tasks such as basic processing and handling images, image mapping, and detecting images. It also covers popular OpenCV libraries with the help of examples., The book is a practical tutorial that covers various examples at different levels, teaching you about the different functions of OpenCV and their actual implementation., Style and approach, This is a conversational-style book filled with hands-on examples that are really easy to understand. Each topic is explained very clearly and is followed by a programmatic implementation so that the concept is solidified. Each topic contributes to something bigger in the following chapters, which helps you understand how to piece things together to build something big and complex.
application/pdf
Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques Emilio Soria Olivas University of Valencia, Spain José David Martín Guerrero University of Valencia, Spain Marcelino Martinez Sober University of Valencia, Spain Jose Rafael Magdalena Benedito University of Valencia, Spain Antonio José Serrano López University of Valencia, Spain Contents Chapter 1 Exploring the Unknown Nature of Data: Cluster Analysis and Applications Chapter 2 Principal Graphs and Manifolds Chapter 3 Learning Algorithms for RBF Functions and Subspace Based Functions Chapter 4 Nature Inspired Methods for Multi-Objective Optimization Chapter 5 Artificial Immune Systems for Anomaly Detection Chapter 6 Calibration of Machine Learning Models Chapter 7 Classification with Incomplete Data Chapter 8 Clustering and Visualization of Multivariate Time Series Chapter 9 Locally Recurrent Neural Networks and Their Applications Chapter 10 Nonstationary Signal Analysis with Kernel Machines Chapter 11 Transfer Learning Chapter 12 Machine Learning in Personalized Anemia Treatment Chapter 13 Deterministic Pattern Mining On Genetic Sequences Chapter 14 Machine Learning in Natural Language Processing Chapter 15 Machine Learning Applications in Mega-Text Processing Chapter 16 FOL Learning for Knowledge Discovery in Documents Chapter 17 Machine Learning and Financial Investing Chapter 18 Applications of Evolutionary Neural Networks for Sales Forecasting of Fashionable Products Chapter 19 Support Vector Machine based Hybrid Classifiers and Rule Extraction thereof: Application to Bankruptcy Prediction in Banks Chapter 20 Data Mining Experiences in Steel Industry Chapter 21 Application of Neural Networks in Animal Science Chapter 22 Statistical Machine Learning Approaches for Sports Video Mining Using Hidden Markov Models Chapter 23 A Survey of Bayesian Techniques in Computer Vision Chapter 24 Software Cost Estimation using Soft Computing Approaches Chapter 25 Counting the Hidden Defects in Software Documents Chapter 26 Machine Learning for Biometrics Chapter 27 Neural Networks for Modeling the Contact Foot-Shoe Upper Chapter 28 Evolutionary Multi-Objective Optimization of Autonomous Mobile Robots in Neural-Based Cognition for Behavioural Robustness Chapter 29 Improving Automated Planning with Machine Learning

最新推荐

Data Mining and Analysis_Fundamental Concepts and Algorithms_2014

Data Mining and Analysis_Fundamental Concepts and Algorithms_2014

Data Structures and Algorithms for Big Databases

I/O model and cache-oblivious analysis Write-optimized data structures How write-optimized data structures can help file systems Block-replacement algorithms Indexing strategies Log-structured merge ...

Convex_Optimization_Stanford_课件全_.pdf

理论部分由4章构成,不仅涵盖了凸优化的所有基本概念和主要结果,还详细介绍了几类基本的凸优化问题以及将特殊的优化问题表述为凸优化问题的变换方法,这些内容对灵活运用凸优化知识解决实际问题非常有用。...

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

如何查看mysql版本

### 回答1: 可以通过以下两种方式来查看MySQL版本: 1. 通过命令行方式: 打开终端,输入以下命令: ``` mysql -V ``` 回车后,会显示MySQL版本信息。 2. 通过MySQL客户端方式: 登录到MySQL客户端,输入以下命令: ``` SELECT VERSION(); ``` 回车后,会显示MySQL版本信息。 ### 回答2: 要查看MySQL的版本,可以通过以下几种方法: 1. 使用MySQL命令行客户端:打开命令行终端,输入mysql -V命令,回车后会显示MySQL的版本信息。 2. 使用MySQL Workbench:打开MyS

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�

self.dilation_rate = dilation_rate

### 回答1: 这是一个在神经网络中使用的超参数,用于控制卷积层中滤波器中采样间隔的大小。这意味着,通过设置 dilation_rate 参数,可以调整卷积层的感受野大小。如果 dilation_rate 参数设置为1,则表示使用常规的卷积操作,如果设置大于1,则表示在滤波器中的像素之间跳过一些像素,从而增加了感受野的大小。这通常用于处理具有大尺度特征的图像或语音信号。 ### 回答2: self.dilation_rate = dilation_rate 是一个Python类中的赋值语句。这条语句的作用是将变量dilation_rate的值赋给类的成员变量self.dilation_

freescale IMX6 开发板原理图

freesacle 的arm cortex-a9的双核 四核管脚兼容CPU开发板原理图。