使用pytorch实现图片中数字的识别的示例

时间: 2023-04-05 10:04:50 浏览: 44
可以回答这个问题。以下是一个使用 PyTorch 实现图片中数字识别的示例: 1. 首先,需要准备 MNIST 数据集,可以使用 PyTorch 内置的 torchvision.datasets.MNIST 类来下载和加载数据集。 2. 然后,需要定义一个神经网络模型,可以使用 PyTorch 的 nn.Module 类来定义。可以使用卷积神经网络(CNN)来实现数字识别。 3. 接下来,需要定义损失函数和优化器。可以使用交叉熵损失函数和随机梯度下降(SGD)优化器。 4. 然后,需要编写训练代码。可以使用 PyTorch 的 DataLoader 类来加载数据集,并使用 nn.Module 的 train() 方法来训练模型。 5. 最后,可以使用训练好的模型来预测新的数字图片。可以使用 nn.Module 的 eval() 方法来切换到评估模式,并使用模型的 forward() 方法来进行预测。 希望这个示例能够帮助你实现图片中数字的识别。
相关问题

使用pytorch搭建卷积神经网络识别手写数字

### 回答1: 使用PyTorch搭建卷积神经网络可以很容易地实现手写数字识别。首先需要导入PyTorch库,并加载手写数字数据集。然后,可以定义卷积神经网络的结构,包括卷积层、池化层、全连接层等。接着,可以定义损失函数和优化器,并进行模型训练。最后,可以使用测试集对模型进行评估。整个过程需要注意超参数的选择和调整,以达到最佳的识别效果。 ### 回答2: Pytorch是一个非常流行的深度学习框架,它的设计目的是为了能够快速地搭建神经网络模型,并进行训练和测试。本文将介绍如何使用Pytorch搭建卷积神经网络来对手写数字进行识别。 首先,我们需要准备手写数字数据集,其中包含许多手写数字图片和其对应的标签。这里我们可以使用MNIST数据集,它是一个非常著名的手写数字识别数据集,包含60000张训练图片和10000张测试图片。Pytorch已经内置了该数据集。 接着,我们需要构建卷积神经网络模型。对于手写数字识别任务,我们可以采用经典的LeNet-5模型,它是一个两层卷积层和三层全连接层的模型。在Pytorch中,我们可以使用nn.Module类来定义模型。 模型定义如下: ``` import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.pool1(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.pool2(x) x = x.view(-1, 16 * 4 * 4) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) return x ``` 上述代码定义了一个名为LeNet的模型,该模型由两个卷积层、两个最大池化层和三个全连接层组成,并且采用ReLU作为激活函数。 接下来,我们需要定义损失函数和优化器。在这里,我们将采用交叉熵作为损失函数,优化器使用随机梯度下降(SGD)。 ``` criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(lenet.parameters(), lr=0.001, momentum=0.9) ``` 最后,我们需要定义一些训练和测试的函数,并开始训练模型。 ``` def train(model, dataloader, criterion, optimizer): model.train() running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(dataloader): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc def test(model, dataloader, criterion): model.eval() running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in dataloader: inputs, labels = data outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc for epoch in range(num_epochs): train_loss, train_acc = \ train(lenet, train_dataloader, criterion, optimizer) valid_loss, valid_acc = \ test(lenet, valid_dataloader, criterion) print(f"Epoch {epoch + 1}: ") print(f"Train Loss={train_loss:.4f}, Train Acc={train_acc:.4f}") print(f"Valid Loss={valid_loss:.4f}, Valid Acc={valid_acc:.4f}") ``` 此时,我们的模型已经成功训练好了,可以使用测试集进行测试了。测试代码如下: ``` test_loss, test_acc = \ test(lenet, test_dataloader, criterion) print(f"Test Loss={test_loss:.4f}, Test Acc={test_acc:.4f}") ``` 在完成测试后,可以使用以下语句保存该模型: ``` torch.save(lenet.state_dict(), "lenet.pth") ``` 上述代码将保存模型的权重参数到文件lenet.pth中。 最后,我们可以使用以下代码加载该模型并对样本进行识别: ``` lenet.load_state_dict(torch.load("lenet.pth")) lenet.eval() sample, _ = test_dataset[0] outputs = lenet(torch.unsqueeze(sample, dim=0)) _, predicted = \ torch.max(outputs.data, dim=1) print(f"Predicted Label: {predicted.item()}") ``` 这段代码将加载保存的模型权重,并使用该模型识别测试集中第一张图片的标签。 ### 回答3: 使用pytorch搭建卷积神经网络(Convolutional Neural Network, CNN)识别手写数字,下面是详细步骤: 1. 数据集准备 使用MNIST手写数字数据集,该数据集由60,000个训练图像和10,000个测试图像组成。在pytorch中可以使用torchvision.datasets.MNIST()加载该数据集。 2. 构建CNN模型 使用pytorch的nn.Module来定义CNN模型,其中包括卷积层、ReLU激活函数、池化层以及全连接层等。 3. 定义损失函数和优化器 定义交叉熵损失函数(CrossEntropyLoss)和随机梯度下降优化器(SGD,Stochastic Gradient Descent)。 4. 训练模型 使用dataloader来加载数据集,对模型进行训练,可以使用epoch的方式进行多次训练。 5. 评估模型 在测试集上进行预测,并计算准确率等指标,评估模型的性能。 下面是一份pytorch代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 加载MNIST数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) batch_size = 32 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 构建CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(7 * 7 * 64, 1024) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu3(x) x = self.fc2(x) return x model = CNN() print(model) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 评估模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 通过训练和评估,我们可以得到一个准确率较高的手写数字识别CNN模型。

基于pytorch的minist手写数字识别

好的,下面是基于 PyTorch 的手写数字识别 MNIST 的代码示例: 首先,需要导入需要的库: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms ``` 接着,定义网络模型: ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) ``` 这里定义了一个包含两个卷积层和两个全连接层的卷积神经网络。 然后,定义训练与测试函数: ```python def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += nn.functional.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) ``` 在训练函数中,将模型设置为“训练模式”,然后对于每个批次进行前向传播、反向传播和优化。在测试函数中,将模型设置为“评估模式”,然后对于测试集进行前向传播,并计算损失和准确率。 最后,载入数据并进行训练: ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=1000, shuffle=True) model = Net().to(device) optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) for epoch in range(1, 11): train(model, device, train_loader, optimizer, epoch) test(model, device, test_loader) ``` 这里使用了 MNIST 数据集,并对数据进行了标准化处理。模型采用了 SGD 优化器,学习率为 0.01,动量为 0.5。进行了 10 轮的训练。可以根据需要进行调整。 希望这个示例对你有所帮助!

相关推荐

以下是使用PyTorch实现CNN手写数字识别并计算查准率、查全率和ALU的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets # 设置超参数 num_epochs = 10 num_classes = 10 batch_size = 100 learning_rate = 0.001 # 加载数据集并进行预处理 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 创建数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(7*7*32, num_classes) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = out.reshape(out.size(0), -1) out = self.fc(out) return out # 实例化CNN模型 model = CNN() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播并优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每训练100个batch就输出一次信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('准确率: {} %'.format(100 * correct / total)) # 计算查准率、查全率和ALU with torch.no_grad(): TP, TN, FP, FN = 0, 0, 0, 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) for i in range(len(labels)): if labels[i] == predicted[i]: if labels[i] == 1: TP += 1 else: TN += 1 else: if labels[i] == 1: FN += 1 else: FP += 1 precision = TP / (TP + FP) recall = TP / (TP + FN) ALU = (TN + TP) / (TN + TP + FP + FN) print('查准率: {:.4f}, 查全率: {:.4f}, ALU: {:.4f}'.format(precision, recall, ALU)) 在以上代码中,我们首先加载MNIST数据集并进行预处理。然后,我们定义了一个CNN模型,并且实例化了该模型。接着,我们定义了损失函数和优化器,并在训练过程中使用它们。最后,我们测试了模型的准确率,并计算了查准率、查全率和ALU。 请注意,查准率(precision)是指正确预测为正类的样本数(True Positive)占所有预测为正类的样本数(True Positive + False Positive)的比例;查全率(recall)是指正确预测为正类的样本数(True Positive)占所有真实为正类的样本数(True Positive + False Negative)的比例;ALU(Accuracy of Labeling Unlabeled data)是指正确预测为负类的样本数(True Negative)和正确预测为正类的样本数(True Positive)占所有样本数(True Negative + True Positive + False Negative + False Positive)的比例。
我可以回答这个问题。以下是一个使用PyTorch实现MNIST手写数字识别的代码示例: import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=True) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64 * 12 * 12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 定义模型、损失函数和优化器 model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 11): train(epoch) test() 这个代码使用了一个卷积神经网络来对MNIST手写数字进行分类。在训练过程中,使用了随机梯度下降优化器和交叉熵损失函数。在测试过程中,计算了模型的准确率和平均损失。
可以使用PyTorch框架实现手写数字识别。具体步骤如下: 1. 准备数据集:手写数字识别数据集包括MNIST和Fashion-MNIST等。可以使用PyTorch提供的torchvision库中的datasets来加载数据集。 2. 定义模型:可以使用卷积神经网络(CNN)来实现手写数字识别。在PyTorch中可以使用nn模块进行模型的定义。 3. 训练模型:使用PyTorch中的优化器(如SGD、Adam等)和损失函数(如交叉熵损失函数)来训练模型。可以使用PyTorch提供的DataLoader来进行数据的批量读取。 4. 测试模型:使用测试集对训练好的模型进行测试,评估模型的识别准确率。 下面是一个简单的示例代码: import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True) # 定义数据加载器 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义模型、优化器和损失函数 model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(test_loader): output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() print('Accuracy: %f %%' % (100 * correct / total)) 以上代码实现了一个简单的手写数字识别模型,使用了MNIST数据集进行训练和测试。在训练10个epoch后,该模型在测试集上的识别准确率可达到97%左右。
对于手写体数字识别MNIST问题,您可以使用PyTorch来实现。以下是一个简单的代码示例: 首先,导入所需的库: import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms 接下来,定义超参数: input_size = 784 hidden_size = 100 num_classes = 10 num_epochs = 5 batch_size = 100 learning_rate = 0.001 然后,加载并预处理数据集: train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) 定义神经网络模型: class NeuralNet(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.fc2 = nn.Linear(hidden_size, num_classes) def forward(self, x): out = self.fc1(x) out = self.relu(out) out = self.fc2(out) return out model = NeuralNet(input_size, hidden_size, num_classes) 定义损失函数和优化器: criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 训练模型: total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): images = images.reshape(-1, 28*28) # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) 在测试集上评估模型: model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: images = images.reshape(-1, 28*28) outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('准确率: {} %'.format(100 * correct / total)) 这是一个简单的PyTorch实现手写体数字识别MNIST的示例。您可以根据需要进行进一步的调整和改进。
PyTorch是一种基于Python的深度学习框架,可以用于训练神经网络并实现各种机器学习任务,包括手写数字识别。下面是一个简单的PyTorch手写数字识别的示例: 首先,我们需要导入需要的库和模块: python import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms 然后,我们定义一个类来构建我们的神经网络模型。在这个例子中,我们使用一个简单的卷积神经网络(CNN)模型: python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) 接下来,我们设置一些超参数并加载MNIST数据集: python batch_size = 64 learning_rate = 0.01 momentum = 0.5 train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) 然后,我们实例化我们的模型和优化器: python model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) 接下来,我们定义训练和测试函数: python def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = nn.functional.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data[0])) def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += nn.functional.nll_loss(output, target, size_average=False).data[0] pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) 最后,我们开始训练和测试我们的模型: python for epoch in range(1, 10): train(epoch) test() 这个示例代码训练了一个简单的CNN模型来对MNIST数据集中的手写数字进行分类。在训练了10个epoch之后,模型的测试准确率约为98%左右。你也可以尝试调整超参数和网络结构来改进模型的性能。
下面是一个基于 PyTorch 的手写数字识别代码示例: python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载训练集和测试集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(10): # 进行 10 次训练循环 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 199: # 每 200 次迭代输出一次损失值 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) 这个代码使用了一个基于卷积神经网络的模型,使用交叉熵损失函数和随机梯度下降优化器进行训练和测试。你可以根据自己的需求进行修改和调整。
您好!对于在Kaggle上进行数字识别任务,您可以使用PyTorch框架来实现。以下是一个基本的示例代码,帮助您入门: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision import datasets, transforms # 设置随机种子,以便结果可复现 torch.manual_seed(42) # 数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # 加载训练集和测试集 train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True) # 创建数据加载器 train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练模型 for epoch in range(10): running_loss = 0.0 for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}: Loss {running_loss/len(train_loader)}") # 测试模型 model.eval() correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f"Accuracy on test set: {(correct / total) * 100}%") 希望这个示例能帮助您开始在Kaggle上进行数字识别任务!如果您有任何进一步的问题,请随时提问。
可以使用PyTorch来实现手写数字识别。以下是一个简单的示例代码: import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # 加载MNIST数据集 train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) model = Net() # 定义优化器和损失函数 optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() # 训练模型 for epoch in range(10): for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() # 测试模型 test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( test_loss, correct, len(test_loader.dataset), accuracy)) 这个代码使用了一个简单的卷积神经网络来识别手写数字。你可以通过调整模型的结构和超参数来提高模型的性能。
我可以回答这个问题。以下是一个使用 PyTorch 实现手写数字识别 MNIST 数据集的代码示例: import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc2(x) output = nn.functional.log_softmax(x, dim=1) return output # 加载数据集 train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transforms.ToTensor()) # 定义训练参数 batch_size = 64 learning_rate = 0.01 momentum = 0.5 # 定义优化器和损失函数 model = Net() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum) criterion = nn.CrossEntropyLoss() # 训练模型 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False) epochs = 10 for epoch in range(epochs): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = 100. * correct / len(test_loader.dataset) print('Epoch: {}, Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format( epoch, test_loss, correct, len(test_loader.dataset), accuracy)) 这个代码实现了一个卷积神经网络,用于对 MNIST 数据集中的手写数字进行分类。训练过程中使用了随机梯度下降优化器和交叉熵损失函数。在训练结束后,输出了测试集上的平均损失和准确率。
好的,下面是一个简单的示例代码,使用PyTorch实现MNIST手写数字识别: python import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import datasets, transforms # 加载数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) testset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.fc1 = nn.Linear(64*5*5, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 64*5*5) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) net = Net() # 定义优化器和损失函数 optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5) criterion = nn.NLLLoss() # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) 在这个示例中,我们首先使用torchvision加载MNIST数据集,并对数据进行标准化处理。然后我们定义了一个包含两个卷积层和两个全连接层的神经网络,使用ReLU作为激活函数,并使用负对数似然损失作为损失函数,优化器使用SGD。接着我们训练模型并测试模型的准确率。
你可以使用PyTorch来实现CNN(卷积神经网络)手写数字识别。以下是一个简单的示例代码: python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(64*7*7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.relu(x) x = self.maxpool(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) return x # 加载MNIST数据集 train_dataset = datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root='data', train=False, transform=transforms.ToTensor()) # 定义训练和测试数据加载器 batch_size = 64 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 初始化模型和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) for epoch in range(num_epochs): for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device) targets = targets.to(device) # 前向传播 scores = model(data) loss = criterion(scores, targets) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item():.4f}') # 在测试集上评估模型 def test_model(model, test_loader): model.eval() num_correct = 0 num_samples = 0 with torch.no_grad(): for data, targets in test_loader: data = data.to(device) targets = targets.to(device) scores = model(data) _, predictions = scores.max(1) num_correct += (predictions == targets).sum() num_samples += predictions.size(0) accuracy = num_correct / num_samples print(f'Test Accuracy: {accuracy*100:.2f}%') test_model(model, test_loader) 这是一个简单的CNN模型,可用于MNIST手写数字识别任务。你可以根据需要调整模型结构和超参数来提高准确率。
以下是一个基于PyTorch的图片验证码识别问题代码的示例: python import torch import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder import os # 定义模型结构 class CaptchaModel(torch.nn.Module): def __init__(self): super(CaptchaModel, self).__init__() self.conv1 = torch.nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.pool1 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.pool2 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.pool3 = torch.nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.fc1 = torch.nn.Linear(128*4*13, 1024) self.fc2 = torch.nn.Linear(1024, 4*10) def forward(self, x): x = self.conv1(x) x = torch.nn.functional.relu(x) x = self.pool1(x) x = self.conv2(x) x = torch.nn.functional.relu(x) x = self.pool2(x) x = self.conv3(x) x = torch.nn.functional.relu(x) x = self.pool3(x) x = x.view(-1, 128*4*13) x = self.fc1(x) x = torch.nn.functional.relu(x) x = self.fc2(x) return x # 加载模型 model = CaptchaModel() model.load_state_dict(torch.load('captcha_model.pth')) # 定义验证码字符集 charset = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' # 定义预处理函数 preprocess = transforms.Compose([ transforms.Resize((50, 200)), transforms.ToTensor(), ]) # 定义测试函数 def test_captcha(image_path): # 加载图像 image = Image.open(image_path).convert('RGB') # 预处理图像 image = preprocess(image) # 扩展维度 image = image.unsqueeze(0) # 预测结果 output = model(image) # 获取预测结果的索引 output = torch.argmax(output, dim=1) # 将索引转换成字符 captcha = ''.join([charset[i] for i in output]) return captcha # 定义测试函数 def test(dataset_path): # 加载数据集 dataset = ImageFolder(dataset_path, transform=preprocess) # 创建数据加载器 dataloader = DataLoader(dataset, batch_size=1) # 初始化正确率 accuracy = 0 # 遍历数据集 for images, labels in dataloader: # 获取图像路径 image_path = dataset.samples[labels[0]][0] # 获取真实验证码 captcha = os.path.splitext(os.path.basename(image_path))[0] # 预测验证码 predict_captcha = test_captcha(image_path) # 判断是否正确 if captcha == predict_captcha: accuracy += 1 else: print(f'Error: {captcha} -> {predict_captcha}') # 输出正确率 print(f'Accuracy: {accuracy}/{len(dataset)} = {accuracy/len(dataset)*100:.2f}%') # 测试 test('captcha_dataset') 需要注意的是,在运行代码之前,需要准备好验证码数据集,其中每个子文件夹包含了相同字符数量的验证码图像。例如,如果字符集中包含数字和大小写字母,那么数据集的目录结构可以如下所示: captcha_dataset ├── 0 │ ├── 0001.png │ ├── 0002.png │ ├── ... ├── 1 │ ├── 0001.png │ ├── 0002.png │ ├── ... ├── ... ├── z │ ├── 0001.png │ ├── 0002.png │ ├── ... └── z ├── 0001.png ├── 0002.png ├── ... 另外,这只是一个简单的验证码识别问题代码,针对不同的验证码类型,可能需要进行一些调整,比如修改模型结构、调整字符集等。
以下是使用PyTorch实现LeNet-5手写数字识别的示例代码: 1. 导入所需的库 import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import MNIST 2. 定义LeNet-5模型 class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1) self.pool1 = nn.AvgPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1) self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(16*4*4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16*4*4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x 3. 定义训练函数 def train(model, train_loader, criterion, optimizer, device): model.train() running_loss = 0.0 for i, (inputs, labels) in enumerate(train_loader, 0): inputs, labels = inputs.to(device), labels.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() epoch_loss = running_loss / len(train_loader) return epoch_loss 4. 定义测试函数 def test(model, test_loader, criterion, device): model.eval() correct = 0 total = 0 running_loss = 0.0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() epoch_loss = running_loss / len(test_loader) epoch_accuracy = 100 * correct / total return epoch_loss, epoch_accuracy 5. 加载数据集并进行数据预处理 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_data = MNIST(root='data', train=True, download=True, transform=transform) test_data = MNIST(root='data', train=False, download=True, transform=transform) train_loader = DataLoader(train_data, batch_size=64, shuffle=True) test_loader = DataLoader(test_data, batch_size=64, shuffle=False) 6. 设置超参数并进行训练 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = LeNet5().to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) num_epochs = 10 for epoch in range(num_epochs): train_loss = train(model, train_loader, criterion, optimizer, device) test_loss, test_accuracy = test(model, test_loader, criterion, device) print(f"Epoch {epoch+1}/{num_epochs} - train_loss: {train_loss:.4f} - test_loss: {test_loss:.4f} - test_accuracy: {test_accuracy:.2f}%") 运行以上代码后,即可对MNIST手写数字进行识别。

最新推荐

Pytorch实现的手写数字mnist识别功能完整示例

主要介绍了Pytorch实现的手写数字mnist识别功能,结合完整实例形式分析了Pytorch模块手写字识别具体步骤与相关实现技巧,需要的朋友可以参考下

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

java二维数组矩阵相乘

矩阵相乘可以使用二维数组来实现,以下是Java代码示例: ```java public class MatrixMultiplication { public static void main(String[] args) { int[][] matrix1 = {{1, 2, 3}, {4, 5, 6}}; // 定义一个2x3的矩阵 int[][] matrix2 = {{7, 8}, {9, 10}, {11, 12}}; // 定义一个3x2的矩阵 int[][] result = multiply(matrix1, matr

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

ant-button 点击实践

好的,下面是 ant-button 点击实践的步骤: 1. 首先,在你的项目中安装 Ant Design UI 库,可以通过 npm 命令进行安装: ``` npm install antd --save ``` 2. 在你的代码中引入 antd 库和 antd 样式,示例代码如下: ```javascript import React from 'react'; import ReactDOM from 'react-dom'; import 'antd/dist/antd.css'; import { Button } from 'antd'; function handleCl

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

mybatisplus如何用注解设置联合主键

Mybatis-Plus支持使用注解来设置联合主键,可以使用`@TableId`注解来设置主键,同时使用`value`属性和`type`属性来设置联合主键的字段和类型。示例代码如下: ```java @Data @TableName("user") public class User { @TableId(value = "id", type = IdType.AUTO) private Long id; @TableId(value = "username") private String username; @TableId(value = "