import matplotlib.pyplot as plt # test_score 测试集的精度 y1_i = [32.01377033999997, 52.995126360000086,185.63600004000017] y1_c = [34.805954499999984,59.619636000000014,188.34518989999992] y1_a = [34.05963100000008, 53.854412799999864,187.09286480000037] # macro-F1 测试集的宏F1 y2_i = [] y2_c = [] y2_a = [] # micro-F1 测试集的微F1 y3_i = [] y3_c = [] y3_a = [] # # 隐藏层神经元的个数 # x1 = [] # 隐藏层的个数 x2 = [100,200,400] # # 窗口大小 # x3 = [] ax1 = plt.gca() ax1.set(xlabel='neuron_num', ylabel='train_seconds') # ax1.set(xlabel='batch_size', ylabel='accuracy') # ax1.set(xlabel='batch_size', ylabel='macro-F1') # ax1.set(xlabel='batch_size', ylabel='micro-F1') # 三种不同学习率 l1, = ax1.plot(x2,y1_i,'red', label='invscaling') l2, = ax1.plot(x2,y1_c,'green', label='constant') l3, = ax1.plot(x2,y1_a,'blue', label='adaptive') plt.legend() plt.show()
时间: 2023-07-15 10:14:38 浏览: 102
Matplotlib.pyplot 三维绘图的实现示例
这段代码是用于绘制三种不同学习率下,不同神经元个数对应的训练时间的折线图。其中,测试集的精度、宏F1和微F1分别用y1_i、y2_i和y3_i表示。对于每一种学习率,都有对应的三条折线,分别用l1、l2和l3表示。x2代表隐藏层的神经元个数,根据代码注释中所说,x1和x3可能是其他的两个超参数。最后,通过plt.show()将图像展示出来。
阅读全文