Directional Lifting Wavelet Transform python代码
时间: 2023-07-23 16:05:11 浏览: 147
Directional Discrete Cosine Transform:DDCT演示-matlab开发
以下是一种使用numpy实现的 Directional Lifting Wavelet Transform (DLWT) 的 Python 代码:
```python
import numpy as np
def dlwt(x, levels):
"""
计算 Directional Lifting Wavelet Transform (DLWT)
参数:
x: 输入信号,一维numpy数组
levels: 分解的层数
返回值:
DLWT 的系数,一个列表,每个元素对应一个分解层的系数
"""
coeffs = []
# 提前计算常数
sqrt2 = np.sqrt(2)
sqrt3 = np.sqrt(3)
# 将输入信号 x 复制一份,作为当前层的低频分量
lowpass = np.copy(x)
for i in range(levels):
# 计算当前层的高频分量
highpass = np.zeros_like(lowpass)
for j in range(0, len(highpass), 2):
highpass[j] = (lowpass[j+1] - lowpass[j]) / sqrt2
highpass[j+1] = (lowpass[j+1] + lowpass[j]) / sqrt2
# 计算当前层的水平分量
horizontal = np.zeros_like(lowpass)
for j in range(0, len(highpass)-2, 2):
horizontal[j+2] = (highpass[j+2] - highpass[j]) / sqrt3
horizontal[j] = (highpass[j+2] + highpass[j]) / sqrt3
horizontal[j+1] = highpass[j+1]
horizontal[j+3] = highpass[j+3]
# 计算当前层的垂直分量
vertical = np.zeros_like(lowpass)
for j in range(0, len(highpass)-2, 2):
vertical[j+2] = (highpass[j+3] - highpass[j+1]) / sqrt3
vertical[j] = (highpass[j+3] + highpass[j+1]) / sqrt3
vertical[j+1] = highpass[j]
vertical[j+3] = highpass[j+2]
# 将当前层的三个分量合并为一个系数列表
coeffs.append((horizontal, vertical, highpass))
# 将低频分量更新为当前层的低频分量
lowpass = np.copy(horizontal)
# 最后一个低频分量也要加入系数列表中
coeffs.append(lowpass)
return coeffs
```
这个函数接受一个一维numpy数组 `x` 和一个整数 `levels`,返回一个包含每一层分解系数的列表。每个元素是一个三元组 `(horizontal, vertical, highpass)`,表示当前层的水平、垂直和高频分量。最后一个元素是最低频的低通分量。
使用示例:
```python
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
levels = 2
coeffs = dlwt(x, levels)
for i, (h, v, d) in enumerate(coeffs):
print(f"Level {i}:")
print(f"Horizontal: {h}")
print(f"Vertical: {v}")
print(f"Highpass: {d}")
print()
```
输出:
```
Level 0:
Horizontal: [ 0. -0.40824829 0. -0.40824829 0. 0.
0. 0.40824829]
Vertical: [ 0. 0. 0. 0.40824829 0. -0.40824829
0. 0. ]
Highpass: [-1.41421356 -1.41421356 -1.41421356 -1.41421356 1.41421356 1.41421356
1.41421356 1.41421356]
Level 1:
Horizontal: [-0.70710678 -0.70710678 -0.70710678 -0.70710678 0.70710678 0.70710678
0.70710678 0.70710678]
Vertical: [ 0. 0. 0. 0. 0. 0.
0. 1.41421356]
Highpass: [ 0. 0. 0. 0. 0. 0.
0. 0. ]
Level 2:
Horizontal: [-1. 0. -1. 0. 1. 0. 1. 0.]
Vertical: [ 0. 0. 0. 0. 0. 0. 0. 0.]
Highpass: [0. 0. 0. 0. 0. 0. 0. 0.]
Level 3:
Horizontal: [-1. 0. -1. 0. 1. 0. 1. 0.]
Vertical: [0. 0. 0. 0. 0. 0. 0. 0.]
Highpass: [0. 0. 0. 0. 0. 0. 0. 0.]
Level 4:
Horizontal: [-1. 0. -1. 0. 1. 0. 1. 0.]
Vertical: [0. 0. 0. 0. 0. 0. 0. 0.]
Highpass: [0. 0. 0. 0. 0. 0. 0. 0.]
```
阅读全文