二步四阶线性多步法求解常微分问题u ′ (x) = −5u, u(0) = 1, 0 < x < 1,matlab程序
时间: 2023-11-26 09:06:39 浏览: 152
以下是使用二步四阶线性多步法(BDF2)求解常微分方程的 Matlab 程序:
```matlab
function [x, y] = bdf2(f, y0, a, b, h)
% f: 函数句柄,表示 y'=f(x,y)
% y0: 初始值,即 y(a) = y0
% a, b: 区间 [a, b]
% h: 步长
% x: 自变量的取值
% y: 解向量
% 计算节点数
N = floor((b-a)/h) + 1;
% 初始化
x = linspace(a, b, N)';
y = zeros(N, 1);
y(1) = y0;
% 使用前两个节点的值计算第三个节点的值
y(2) = y(1) + h*f(x(1), y(1));
for n = 2:N-1
% 计算预测值
y_n1_star = 4/3*y(n) - 1/3*y(n-1) + 2/3*h*f(x(n), y(n));
% 计算校正值
y_n1 = 1/3*y(n-1) + 2/3*y_n1_star + 2/3*h*f(x(n+1), y_n1_star);
% 更新解向量
y(n+1) = y_n1;
end
```
使用该程序求解题目中的常微分方程,可以这样调用:
```matlab
f = @(x, y) -5*y;
y0 = 1;
a = 0;
b = 1;
h = 0.1;
[x, y] = bdf2(f, y0, a, b, h);
```
其中 `f` 表示常微分方程右侧的函数,`y0` 表示初值,`a` 和 `b` 表示求解区间,`h` 表示步长。 `x` 和 `y` 分别是自变量和解向量。
阅读全文
相关推荐













