在以下python代码中,加入调用GPU加速的代码。import csv import os # 读取csv文件并按时间排序 csv_path = r'E:\count\matlab\9-29\HTBridge2022-09-29.csv' with open(csv_path, 'r') as file: data = list(csv.reader(file)) data.sort(key=lambda x: x[0]) # 按类别输出到txt文件中 for row in data: time_str = row[0] category = row[2] txt_path = os.path.join(os.getcwd(), category + '.txt') with open(txt_path, 'a') as file: file.write(time_str + '\t' + row[1] + '\n')
时间: 2024-02-25 08:51:26 浏览: 67
Colab_zip_bigdata_
可以使用以下代码将上述代码中的数据处理部分调用GPU加速:
```python
import csv
import os
import torch
from numba import jit
# 加速排序过程
@jit(nopython=True)
def sort_data(data):
data.sort(key=lambda x: x[0])
return data
# 加速数据处理过程
@jit(nopython=True)
def process_data(data):
for row in data:
time_str = row[0]
category = row[2]
txt_path = os.path.join(os.getcwd(), category + '.txt')
with open(txt_path, 'a') as file:
file.write(time_str + '\t' + row[1] + '\n')
# 读取csv文件
csv_path = r'E:\count\matlab\9-29\HTBridge2022-09-29.csv'
with open(csv_path, 'r') as file:
data = list(csv.reader(file))
# 加速数据处理过程
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data = torch.tensor(data).to(device)
data = process_data(data.cpu().numpy())
# 加速排序过程
data = sort_data(data)
# 输出到txt文件中
for row in data:
time_str = row[0]
category = row[2]
txt_path = os.path.join(os.getcwd(), category + '.txt')
with open(txt_path, 'a') as file:
file.write(time_str + '\t' + row[1] + '\n')
```
需要注意的是,加速并不一定会带来显著的性能提升,而且加速也不一定能够在所有情况下都适用。因此,在使用GPU加速时,需要根据具体情况进行评估和调试,以获得最佳的性能提升效果。
阅读全文