tensorflow 实现 Xception
时间: 2023-12-05 08:04:56 浏览: 109
Xception是一种深度学习模型架构,它是由Google提出的,基于Inception架构的改进版本。下面是使用TensorFlow实现Xception模型的示例代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPooling2D, GlobalAveragePooling2D
from tensorflow.keras.layers import SeparableConv2D, Add, Dense
from tensorflow.keras.models import Model
def separable_conv_block(inputs, filters, kernel_size, strides):
x = SeparableConv2D(filters, kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
return x
def entry_flow(inputs):
x = Conv2D(32, 3, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = tf.keras.activations.relu(x)
x = Conv2D(64, 3, padding='same')(x)
x = BatchNormalization()(x)
x = tf.keras.activations.relu(x)
residual = Conv2D(128, 1, strides=2, padding='same')(x)
residual = BatchNormalization()(residual)
x = separable_conv_block(x, 128, 3, strides=1)
x = separable_conv_block(x, 128, 3, strides=1)
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = Add()([x, residual])
residual = Conv2D(256, 1, strides=2, padding='same')(x)
residual = BatchNormalization()(residual)
x = separable_conv_block(x, 256, 3, strides=1)
x = separable_conv_block(x, 256, 3, strides=1)
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = Add()([x, residual])
residual = Conv2D(728, 1, strides=2, padding='same')(x)
residual = BatchNormalization()(residual)
x = separable_conv_block(x, 728, 3, strides=1)
x = separable_conv_block(x, 728, 3, strides=1)
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = Add()([x, residual])
return x
def middle_flow(inputs):
for _ in range(8):
residual = inputs
x = separable_conv_block(inputs, 728, 3, strides=1)
x = separable_conv_block(x, 728, 3, strides=1)
x = separable_conv_block(x, 728, 3, strides=1)
inputs = Add()([inputs, x])
return inputs
def exit_flow(inputs):
residual = Conv2D(1024, 1, strides=2, padding='same')(inputs)
residual = BatchNormalization()(residual)
x = separable_conv_block(inputs, 728, 3, strides=1)
x = separable_conv_block(x, 1024, 3, strides=1)
x = MaxPooling2D(3, strides=2, padding='same')(x)
x = Add()([x, residual])
x = separable_conv_block(x, 1536, 3, strides=1)
x = separable_conv_block(x, 2048, 3, strides=1)
x = GlobalAveragePooling2D()(x)
x = Dense(1000, activation='softmax')(x)
return x
def Xception(input_shape=(299, 299, 3), classes=1000):
inputs = tf.keras.Input(shape=input_shape)
x = entry_flow(inputs)
x = middle_flow(x)
outputs = exit_flow(x)
model = Model(inputs=inputs, outputs=outputs)
return model
# 创建Xception模型
model = Xception()
# 打印模型结构
model.summary()
```
这段代码定义了Xception模型的各个层和模型结构,并使用TensorFlow的Keras API构建了一个Xception模型。你可以根据自己的需求调整模型的输入形状和输出类别数。
阅读全文