利用cyclegan实现人脸老化代码
时间: 2023-06-19 15:06:01 浏览: 218
基于Swfit 实现人脸变老【100013292】
以下是使用CycleGAN实现人脸老化的Python代码,需要使用PyTorch和OpenCV库:
首先,需要安装相关的库:
```
pip install torch torchvision opencv-python
```
然后,我们可以定义一些参数,如图像大小、批量大小、学习率、迭代次数等。
``` python
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', type=str, default='./data', help='path to dataset')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--image_size', type=int, default=256, help='scale images to this size')
parser.add_argument('--epoch', type=int, default=200, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam optimizer')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
opt = parser.parse_args()
print(opt)
```
接下来,我们可以定义模型。在这里,我们使用两个生成器(G_AB和G_BA)和两个判别器(D_A和D_B)来实现CycleGAN。
``` python
import torch.nn as nn
import torch.nn.functional as F
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, 4, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, 4, stride=1, padding=1),
nn.Sigmoid()
)
def forward(self, x):
x = self.conv(x)
return x
```
接下来,我们可以定义损失函数和优化器。
``` python
import torch.optim as optim
criterion_GAN = nn.MSELoss()
criterion_cycle = nn.L1Loss()
criterion_identity = nn.L1Loss()
G_AB = Generator()
G_BA = Generator()
D_A = Discriminator()
D_B = Discriminator()
if opt.ngpu > 0:
G_AB.cuda()
G_BA.cuda()
D_A.cuda()
D_B.cuda()
criterion_GAN.cuda()
criterion_cycle.cuda()
criterion_identity.cuda()
optimizer_G = optim.Adam(
itertools.chain(G_AB.parameters(), G_BA.parameters()),
lr=opt.lr,
betas=(opt.beta1, 0.999)
)
optimizer_D_A = optim.Adam(D_A.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizer_D_B = optim.Adam(D_B.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
```
现在,我们可以加载数据集并进行训练。
``` python
import itertools
import os.path
import random
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import transforms
from PIL import Image
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, root, transform=None, mode='train'):
self.transform = transform
self.files_A = sorted(glob.glob(os.path.join(root, '%sA' % mode) + '/*.*'))
self.files_B = sorted(glob.glob(os.path.join(root, '%sB' % mode) + '/*.*'))
def __getitem__(self, index):
item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)]))
item_B = self.transform(Image.open(self.files_B[random.randint(0, len(self.files_B) - 1)]))
return {'A': item_A, 'B': item_B}
def __len__(self):
return max(len(self.files_A), len(self.files_B))
# Configure data loader
transforms_ = [
transforms.Resize(int(opt.image_size * 1.12), Image.BICUBIC),
transforms.RandomCrop(opt.image_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
]
dataloader = DataLoader(
ImageDataset(opt.dataroot, transforms_=transforms_),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers
)
for epoch in range(opt.epoch):
for i, batch in enumerate(dataloader):
real_A = batch['A'].cuda()
real_B = batch['B'].cuda()
# 训练生成器 G
optimizer_G.zero_grad()
# Identity loss
same_B = G_AB(real_B)
loss_identity_B = criterion_identity(same_B, real_B) * 5.0
same_A = G_BA(real_A)
loss_identity_A = criterion_identity(same_A, real_A) * 5.0
# GAN loss
fake_B = G_AB(real_A)
pred_fake = D_B(fake_B)
loss_GAN_AB = criterion_GAN(pred_fake, torch.ones_like(pred_fake))
fake_A = G_BA(real_B)
pred_fake = D_A(fake_A)
loss_GAN_BA = criterion_GAN(pred_fake, torch.ones_like(pred_fake))
# Cycle loss
recovered_A = G_BA(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A) * 10.0
recovered_B = G_AB(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B) * 10.0
# Total loss
loss_G = loss_identity_A + loss_identity_B + loss_GAN_AB + loss_GAN_BA + loss_cycle_ABA + loss_cycle_BAB
loss_G.backward()
optimizer_G.step()
# 训练判别器 D_A
optimizer_D_A.zero_grad()
pred_real = D_A(real_A)
loss_D_real = criterion_GAN(pred_real, torch.ones_like(pred_real))
pred_fake = D_A(fake_A.detach())
loss_D_fake = criterion_GAN(pred_fake, torch.zeros_like(pred_fake))
loss_D_A = (loss_D_real + loss_D_fake) * 0.5
loss_D_A.backward()
optimizer_D_A.step()
# 训练判别器 D_B
optimizer_D_B.zero_grad()
pred_real = D_B(real_B)
loss_D_real = criterion_GAN(pred_real, torch.ones_like(pred_real))
pred_fake = D_B(fake_B.detach())
loss_D_fake = criterion_GAN(pred_fake, torch.zeros_like(pred_fake))
loss_D_B = (loss_D_real + loss_D_fake) * 0.5
loss_D_B.backward()
optimizer_D_B.step()
if i % 100 == 0:
print('[%d/%d][%d/%d] Loss_G: %.4f Loss_D_A: %.4f Loss_D_B: %.4f' % (epoch, opt.epoch, i, len(dataloader), loss_G.item(), loss_D_A.item(), loss_D_B.item()))
```
训练完成后,我们可以使用以下代码将图片传递给生成器:
``` python
with torch.no_grad():
fake_B = G_AB(real_A)
```
然后,将生成的图片保存到文件中:
``` python
save_image(fake_B, 'output.png')
```
阅读全文