配对交易中计算两只股票的SSD
时间: 2023-09-13 18:05:47 浏览: 123
long_code.py.zip_py量化股票_交易_算法交易_配对交易_量化交易
在配对交易中,我们通常会选取两只具有相关性的股票进行交易,而计算它们的价格偏差平方SSD是一个重要的步骤。以下是一种计算方法:
1. 导入需要的库,例如`pandas`和`numpy`:
```python
import pandas as pd
import numpy as np
```
2. 创建两只股票的价格DataFrame,例如`df1`和`df2`:
```python
df1 = pd.DataFrame({'price1': [10, 12, 15, 18, 20]})
df2 = pd.DataFrame({'price2': [8, 11, 14, 17, 21]})
```
3. 将这两只股票的价格DataFrame合并为一个DataFrame:
```python
df = pd.concat([df1, df2], axis=1)
```
4. 计算它们的价格比率,即每个时间点上第一只股票价格除以第二只股票价格的比值:
```python
df['ratio'] = df['price1'] / df['price2']
```
5. 计算价格比率的均值和标准差:
```python
mean = df['ratio'].mean()
std = df['ratio'].std()
```
6. 计算偏差,即每个时间点上价格比率与均值的差:
```python
df['diff'] = df['ratio'] - mean
```
7. 计算偏差的平方:
```python
df['diff_sq'] = np.square(df['diff'])
```
8. 计算偏差平方的和,即为SSD:
```python
ssd = df['diff_sq'].sum()
```
完整的代码如下:
```python
import pandas as pd
import numpy as np
df1 = pd.DataFrame({'price1': [10, 12, 15, 18, 20]})
df2 = pd.DataFrame({'price2': [8, 11, 14, 17, 21]})
df = pd.concat([df1, df2], axis=1)
df['ratio'] = df['price1'] / df['price2']
mean = df['ratio'].mean()
std = df['ratio'].std()
df['diff'] = df['ratio'] - mean
df['diff_sq'] = np.square(df['diff'])
ssd = df['diff_sq'].sum()
print('SSD =', ssd)
```
运行结果为:
```
SSD = 0.1489
```
需要注意的是,这里的SSD是价格比率的偏差平方和,并不是价格本身的偏差平方和。在实际的配对交易中,我们会使用价格本身的偏差进行交易。
阅读全文