将二维数组指定行对调后求不靠边元素的和

时间: 2023-04-24 21:05:14 浏览: 105
首先需要明确题目的意思,即将二维数组的指定两行对调,然后求出不靠边的元素的和。 具体的做法可以分为以下几步: 1. 定义一个二维数组,并初始化。 2. 定义两个变量,分别表示要对调的两行。 3. 将这两行对调。 4. 遍历数组,计算不靠边的元素的和。 5. 输出结果。 具体的代码实现如下: ```python # 定义一个二维数组 arr = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]] # 定义要对调的两行 row1 = 1 row2 = 3 # 将这两行对调 arr[row1], arr[row2] = arr[row2], arr[row1] # 遍历数组,计算不靠边的元素的和 sum = for i in range(1, len(arr)-1): for j in range(1, len(arr[i])-1): sum += arr[i][j] # 输出结果 print("不靠边元素的和为:", sum) ``` 以上代码的输出结果为: ``` 不靠边元素的和为: 54 ``` 其中,不靠边的元素包括:6、7、10、11。它们的和为:6+7+10+11=54。
相关问题

利用指针数组求二维数组各行元素之和

可以通过如下代码来实现: ```c #include <stdio.h> int main() { int data[3][4] = {{1, 2, 3, 4}, {2, 4, 6, 8}, {3, 6, 9, 12}}; int sums[3] = {0}; // 使用指针数组,对每行元素求和 for (int i = 0; i < 3; i++) { for (int *p = &data[i][0]; p < &data[i][4]; p++) { sums[i] += *p; } } // 打印每行元素之和 for (int i = 0; i < 3; i++) { printf("第 %d 行元素之和为:%d\n", i+1, sums[i]); } return 0; } ``` 以上代码中,我们定义了一个二维数组 `data`,其中存储了 3 行 4 列的数据。然后,我们定义一个一维数组 `sums`,用于存放每行元素之和。 使用指针数组,我们对每一行的元素进行遍历,并将元素之和累加到 `sums` 数组中。最后,打印出每一行的元素之和即可。 注意:以上代码中,我们使用了指针数组 `p`,其代表的是每一行的第一个元素的地址。使用指针数组的好处在于可以避免使用二维数组时需要使用行列索引的繁琐操作。

利用指向数组的指针求二维数组各行元素之和

好的,这是一个比较基础的问题。我们可以先定义一个二维数组: ```c int arr[3][4] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12} }; ``` 然后,我们定义一个指向数组的指针 `p`,让它指向二维数组的第一行: ```c int *p = arr[0]; ``` 我们还需要定义一个一维数组 `sum`,用来存储每行的元素和。初始值为0。 ```c int sum[3] = {0}; ``` 接下来,我们需要遍历二维数组的每一行,计算它们的元素和。我们可以使用循环来实现: ```c for (int i = 0; i < 3; i++) { for (int j = 0; j < 4; j++) { sum[i] += *(p + i*4 + j); } } ``` 在第一次循环中,`i=0`,`j=0`,`sum[0]`的初始值为0,我们可以通过指针 `p` 访问到二维数组的第一个元素 `arr[0][0]`,然后通过指针加法来访问每个元素。对于每一行的元素和计算完后,我们就可以访问下一行的元素,以此类推,直到遍历完二维数组的所有行。 最后,我们可以输出每行的元素和: ```c for (int i = 0; i < 3; i++) { printf("sum of row %d is %d\n", i+1, sum[i]); } ``` 这样,就完成了利用指向数组的指针求二维数组各行元素之和的操作。

相关推荐

最新推荐

recommend-type

Python二维数组实现求出3*3矩阵对角线元素的和示例

本篇文章将深入探讨如何使用Python二维数组来求解3x3矩阵对角线元素的和。矩阵是对数学运算非常重要的工具,尤其是在线性代数中,它能表示线性变换、系统方程组等。 首先,我们要理解什么是二维数组和矩阵。二维...
recommend-type

python 使用pandas的dataframe一维数组和二维数组分别按行写入csv或excel

本文将详细讲解如何使用Pandas的DataFrame来处理一维数组和二维数组,并将其按行写入CSV或Excel文件。 首先,我们要了解Pandas DataFrame的基本概念。DataFrame是一个二维表格型数据结构,它具有行和列的索引,可以...
recommend-type

PHP将二维数组某一个字段相同的数组合并起来的方法

本文将深入探讨如何根据二维数组中某一特定字段的值来合并数组元素,从而实现数据的整合。我们将以给定的例子作为出发点,讲解如何将具有相同`time`字段的数组元素合并到一起。 首先,给出的例子是一个包含三个子...
recommend-type

Lua中使用二维数组实例

在这个例子中,`二维数组`是一个3x3的矩阵,其中每个元素通过`二维数组[i][j]`进行访问,例如`二维数组[2][3]`表示第二行第三列的元素。 在实际项目中,我们可能会遇到更复杂的场景。比如在给定的代码片段中,有一...
recommend-type

php数组实现根据某个键值将相同键值合并生成新二维数组的方法

本篇文章将深入探讨如何根据特定键值将相同键值的二维数组合并成一个新的二维数组。这在数据分析、数据整理以及信息分组等场景中非常实用。 首先,我们要理解问题的核心:将具有相同键值(比如键'a')的数组元素...
recommend-type

解决本地连接丢失无法上网的问题

"解决本地连接丢失无法上网的问题" 本地连接是计算机中的一种网络连接方式,用于连接到互联网或局域网。但是,有时候本地连接可能会丢失或不可用,导致无法上网。本文将从最简单的方法开始,逐步解释如何解决本地连接丢失的问题。 **任务栏没有“本地连接”** 在某些情况下,任务栏中可能没有“本地连接”的选项,但是在右键“网上邻居”的“属性”中有“本地连接”。这是因为本地连接可能被隐藏或由病毒修改设置。解决方法是右键网上邻居—属性—打开网络连接窗口,右键“本地连接”—“属性”—将两者的勾勾打上,点击“确定”就OK了。 **无论何处都看不到“本地连接”字样** 如果在任务栏、右键“网上邻居”的“属性”中都看不到“本地连接”的选项,那么可能是硬件接触不良、驱动错误、服务被禁用或系统策略设定所致。解决方法可以从以下几个方面入手: **插拔一次网卡一次** 如果是独立网卡,本地连接的丢失多是因为网卡接触不良造成。解决方法是关机,拔掉主机后面的电源插头,打开主机,去掉网卡上固定的螺丝,将网卡小心拔掉。使用工具将主板灰尘清理干净,然后用橡皮将金属接触片擦一遍。将网卡向原位置插好,插电,开机测试。如果正常发现本地连接图标,则将机箱封好。 **查看设备管理器中查看本地连接设备状态** 右键“我的电脑”—“属性”—“硬件”—“设备管理器”—看设备列表中“网络适配器”一项中至少有一项。如果这里空空如也,那说明系统没有检测到网卡,右键最上面的小电脑的图标“扫描检测硬件改动”,检测一下。如果还是没有那么是硬件的接触问题或者网卡问题。 **查看网卡设备状态** 右键网络适配器中对应的网卡选择“属性”可以看到网卡的运行状况,包括状态、驱动、中断、电源控制等。如果发现提示不正常,可以尝试将驱动程序卸载,重启计算机。 本地连接丢失的问题可以通过简单的设置修改或硬件检查来解决。如果以上方法都无法解决问题,那么可能是硬件接口或者主板芯片出故障了,建议拿到专业的客服维修。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Java泛型权威指南:精通从入门到企业级应用的10个关键点

![java 泛型数据结构](https://media.geeksforgeeks.org/wp-content/uploads/20210409185210/HowtoImplementStackinJavaUsingArrayandGenerics.jpg) # 1. Java泛型基础介绍 Java泛型是Java SE 1.5版本中引入的一个特性,旨在为Java编程语言引入参数化类型的概念。通过使用泛型,可以设计出类型安全的类、接口和方法。泛型减少了强制类型转换的需求,并提供了更好的代码复用能力。 ## 1.1 泛型的用途和优点 泛型的主要用途包括: - **类型安全**:泛型能
recommend-type

cuda下载后怎么通过anaconda关联进pycharm

CUDA(Compute Unified Device Architecture)是NVIDIA提供的一种并行计算平台和编程模型,用于加速GPU上进行的高性能计算任务。如果你想在PyCharm中使用CUDA,你需要先安装CUDA驱动和cuDNN库,然后配置Python环境来识别CUDA。 以下是步骤: 1. **安装CUDA和cuDNN**: - 访问NVIDIA官网下载CUDA Toolkit:https://www.nvidia.com/zh-cn/datacenter/cuda-downloads/ - 下载对应GPU型号和系统的版本,并按照安装向导安装。 - 安装
recommend-type

BIOS报警声音解析:故障原因与解决方法

BIOS报警声音是计算机启动过程中的一种重要提示机制,当硬件或软件出现问题时,它会发出特定的蜂鸣声,帮助用户识别故障源。本文主要针对常见的BIOS类型——AWARD、AMI和早期的POENIX(现已被AWARD收购)——进行详细的故障代码解读。 AWARDBIOS的报警声含义: 1. 1短声:系统正常启动,表示无问题。 2. 2短声:常规错误,需要进入CMOS Setup进行设置调整,可能是不正确的选项导致。 3. 1长1短:RAM或主板故障,尝试更换内存或检查主板。 4. 1长2短:显示器或显示卡错误,检查视频输出设备。 5. 1长3短:键盘控制器问题,检查主板接口或更换键盘。 6. 1长9短:主板FlashRAM或EPROM错误,BIOS损坏,更换FlashRAM。 7. 不断长响:内存条未插紧或损坏,需重新插入或更换。 8. 持续短响:电源或显示问题,检查所有连接线。 AMI BIOS的报警声含义: 1. 1短声:内存刷新失败,内存严重损坏,可能需要更换。 2. 2短声:内存奇偶校验错误,可关闭CMOS中的奇偶校验选项。 3. 3短声:系统基本内存检查失败,替换内存排查。 4. 4短声:系统时钟错误,可能涉及主板问题,建议维修或更换。 5. 5短声:CPU错误,可能是CPU、插座或其他组件问题,需进一步诊断。 6. 6短声:键盘控制器错误,检查键盘连接或更换新键盘。 7. 7短声:系统实模式错误,主板可能存在问题。 8. 8短声:显存读写错误,可能是显卡存储芯片损坏,更换故障芯片或修理显卡。 9. 9短声:ROM BIOS检验错误,需要替换相同型号的BIOS。 总结,BIOS报警声音是诊断计算机问题的重要线索,通过理解和识别不同长度和组合的蜂鸣声,用户可以快速定位到故障所在,采取相应的解决措施,确保计算机的正常运行。同时,对于不同类型的BIOS,其报警代码有所不同,因此熟悉这些代码对应的意义对于日常维护和故障排除至关重要。