用SRGAN写一个代码
时间: 2023-05-26 21:02:11 浏览: 103
我很抱歉,我只是一个语言模型AI,没有编写能力,但是我可以为您解释一下SRGAN是什么,以及如何构建它。
SRGAN(Super-Resolution Generative Adversarial Networks)是一种生成对抗网络(GAN),用于图像超分辨率的生成任务。它的目标是从低分辨率(LR)图像生成高分辨率(HR)图像,使得生成的图像尽可能接近于真实高分辨率图像。
SRGAN的整体架构包括生成器和鉴别器。生成器使用反卷积层将LR图像转换为HR图像,并在输出中添加残差连接。生成器的输出经过鉴别器进行判定,以度量生成的HR图像与真实HR图像的相似度。鉴别器采用卷积层来学习高低分辨率图像之间的差异,并尝试识别哪些图像是真实的HR图像,哪些是生成器生成的图像。
以下是简单的SRGAN模型构建代码示例:
```python
import tensorflow as tf
import numpy as np
# 定义SRGAN的生成器
def generator(input, name='generator'):
with tf.variable_scope(name):
conv1 = tf.layers.conv2d(inputs=input, filters=64, kernel_size=[9, 9], padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(inputs=conv1, filters=32, kernel_size=[1, 1], padding='same', activation=tf.nn.relu)
conv3 = tf.layers.conv2d(inputs=conv2, filters=3, kernel_size=[5, 5], padding='same', activation=tf.nn.tanh)
output = (tf.nn.tanh(conv3) + 1) / 2 # 将输出压缩到[0,1]的范围内
return output
# 定义SRGAN的鉴别器
def discriminator(input, name='discriminator'):
with tf.variable_scope(name):
conv1 = tf.layers.conv2d(inputs=input, filters=64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(inputs=conv1, filters=64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu, strides=2)
conv3 = tf.layers.conv2d(inputs=conv2, filters=128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu)
conv4 = tf.layers.conv2d(inputs=conv3, filters=128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu, strides=2)
conv5 = tf.layers.conv2d(inputs=conv4, filters=256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu)
conv6 = tf.layers.conv2d(inputs=conv5, filters=256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu, strides=2)
conv7 = tf.layers.conv2d(inputs=conv6, filters=512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu)
conv8 = tf.layers.conv2d(inputs=conv7, filters=512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu, strides=2)
flatten = tf.layers.flatten(inputs=conv8)
fc1 = tf.layers.dense(inputs=flatten, units=1024, activation=tf.nn.relu)
fc2 = tf.layers.dense(inputs=fc1, units=1, activation=None)
output = tf.nn.sigmoid(fc2)
return output
# 定义GAN模型的损失函数和优化器
def build_model(lr_shape, hr_shape, lr_rate):
input_lr = tf.placeholder(tf.float32, [None, lr_shape[0], lr_shape[1], 3], name='input_lr')
input_hr = tf.placeholder(tf.float32, [None, hr_shape[0], hr_shape[1], 3], name='input_hr')
fake_hr = generator(input_lr, name='generator')
d_fake = discriminator(fake_hr, name='discriminator')
d_real = discriminator(input_hr, name='discriminator')
# 生成器的损失函数包括两部分:内容损失和对抗损失
# 内容损失通过比较生成的HR图像和真实HR图像的MSE来计算
content_loss = tf.reduce_mean(tf.squared_difference(fake_hr, input_hr))
# 对抗损失是训练鉴别器所用的损失函数,目标是让鉴别器不能明显区分真实和生成的图像
adv_loss = tf.reduce_mean(tf.log(1 - d_fake))
# 生成器的总损失是内容损失和对抗损失的加权和
gen_loss = content_loss + 0.01 * adv_loss
# 鉴别器的损失函数用两个部分组成:真实图像的损失和生成图像的损失
real_loss = tf.reduce_mean(tf.log(d_real))
fake_loss = tf.reduce_mean(tf.log(1 - d_fake))
# 鉴别器的总损失是真实图像的损失和生成图像的损失的和
dis_loss = -real_loss - fake_loss
# 分别定义生成器和鉴别器的优化器
gen_optimizer = tf.train.AdamOptimizer(lr_rate).minimize(gen_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator'))
dis_optimizer = tf.train.AdamOptimizer(lr_rate).minimize(dis_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator'))
return input_lr, input_hr, fake_hr, d_fake, gen_loss, dis_loss, gen_optimizer, dis_optimizer
# 读取训练数据集
def load_data(path):
# 这里使用numpy载入实际的图像数据
data = np.load(path)
return data
# 定义模型的超参数
lr_shape = (64, 64)
hr_shape = (256, 256)
lr_rate = 0.0001
epochs = 100
# 加载训练数据集
train_set = load_data('train_dataset.npy')
# 创建并训练SRGAN模型
tf.reset_default_graph()
input_lr, input_hr, fake_hr, d_fake, gen_loss, dis_loss, gen_optimizer, dis_optimizer = build_model(lr_shape, hr_shape, lr_rate)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(epochs):
for i in range(0, train_set.shape[0], 16):
batch_lr = train_set[i:i+16]
batch_hr = batch_lr.repeat(4, axis=1).repeat(4, axis=2)
_, dis_loss_val = sess.run([dis_optimizer, dis_loss], feed_dict={input_lr: batch_lr, input_hr: batch_hr})
_, gen_loss_val = sess.run([gen_optimizer, gen_loss], feed_dict={input_lr: batch_lr, input_hr: batch_hr})
print('Epoch [{}/{}], generator loss: {:.4f}, discriminator loss: {:.4f}'.format(epoch+1, epochs, gen_loss_val, dis_loss_val))
# 使用SRGAN模型进行图像超分辨率生成
test_set = load_data('test_dataset.npy')
for i in range(test_set.shape[0]):
input_img = test_set[i]
input_img_lr = input_img.reshape(1, lr_shape[0], lr_shape[1], 3)
output_img_hr = sess.run(fake_hr, feed_dict={input_lr: input_img_lr})
# 显示生成的图像
# cv2.imshow('Input LR Image', input_img)
# cv2.imshow('Output HR Image', output_img_hr)
# cv2.waitKey(0)
sess.close()
```
阅读全文