1.使用NUMPY工具包读取和预处理数据,包括划分数据集为训练数据集和测试数据集。 2.手写代码,利用numpy,实现感知机,前三层前馈神经网络,利用反向传播算法梯度求导更新网络参数 3.利用sklearn库或深度学习库,实现MNIST数据集的前馈神经网络。 比较测试结果,对比自己手写代码和机器学习sklearn库算法结果。

时间: 2024-02-13 07:00:05 浏览: 88
感谢您的提问!我可以为您解答以下几点问题: 1. 使用 NUMPY 工具包读取和预处理数据,包括划分数据集为训练数据集和测试数据集。 可以使用以下代码进行数据读取和划分: ```python import numpy as np from sklearn.model_selection import train_test_split # 读取数据 data = np.loadtxt('data.txt', delimiter=',') X = data[:, :-1] y = data[:, -1] # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 其中,`data.txt` 为数据文件,`test_size` 参数为测试集占比,`random_state` 为随机数种子,保证每次随机划分结果一致。 2. 手写代码,利用 numpy,实现感知机,前三层前馈神经网络,利用反向传播算法梯度求导更新网络参数。 以下是感知机和前馈神经网络的代码实现: 感知机: ```python class Perceptron: def __init__(self, n_features): self.w = np.zeros(n_features) self.b = 0 def fit(self, X, y, learning_rate=0.1, max_epochs=100): for epoch in range(max_epochs): for i in range(X.shape[0]): xi = X[i] yi = y[i] if yi * (np.dot(xi, self.w) + self.b) <= 0: self.w += learning_rate * yi * xi self.b += learning_rate * yi def predict(self, X): return np.sign(np.dot(X, self.w) + self.b) ``` 前馈神经网络: ```python class NeuralNetwork: def __init__(self, n_features, n_hidden, n_output): self.weights1 = np.random.rand(n_features, n_hidden) self.bias1 = np.random.rand(n_hidden) self.weights2 = np.random.rand(n_hidden, n_output) self.bias2 = np.random.rand(n_output) def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def fit(self, X, y, learning_rate=0.1, max_epochs=100): for epoch in range(max_epochs): # forward propagation hidden_layer_input = np.dot(X, self.weights1) + self.bias1 hidden_layer_output = self.sigmoid(hidden_layer_input) output_layer_input = np.dot(hidden_layer_output, self.weights2) + self.bias2 output_layer_output = self.sigmoid(output_layer_input) # backward propagation error = y - output_layer_output d_output = error * self.sigmoid_derivative(output_layer_output) error_hidden = d_output.dot(self.weights2.T) d_hidden = error_hidden * self.sigmoid_derivative(hidden_layer_output) # update weights and biases self.weights2 += learning_rate * hidden_layer_output.T.dot(d_output) self.bias2 += learning_rate * np.sum(d_output, axis=0) self.weights1 += learning_rate * X.T.dot(d_hidden) self.bias1 += learning_rate * np.sum(d_hidden, axis=0) def predict(self, X): hidden_layer_input = np.dot(X, self.weights1) + self.bias1 hidden_layer_output = self.sigmoid(hidden_layer_input) output_layer_input = np.dot(hidden_layer_output, self.weights2) + self.bias2 output_layer_output = self.sigmoid(output_layer_input) return np.round(output_layer_output) ``` 在训练时,可以使用以下代码: ```python perceptron = Perceptron(n_features=X_train.shape[1]) perceptron.fit(X_train, y_train) nn = NeuralNetwork(n_features=X_train.shape[1], n_hidden=4, n_output=1) nn.fit(X_train, y_train) ``` 其中,`n_features` 表示输入特征数,`n_hidden` 表示隐藏层节点数,`n_output` 表示输出节点数。在 `fit` 函数中,`learning_rate` 表示学习率,`max_epochs` 表示最大迭代次数。 3. 利用 sklearn 库或深度学习库,实现 MNIST 数据集的前馈神经网络。比较测试结果,对比自己手写代码和机器学习 sklearn 库算法结果。 以下是使用 sklearn 库实现的前馈神经网络: ```python from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score mlp = MLPClassifier(hidden_layer_sizes=(4,), max_iter=1000) mlp.fit(X_train, y_train) y_pred = mlp.predict(X_test) acc_sklearn = accuracy_score(y_test, y_pred) print('sklearn accuracy:', acc_sklearn) ``` 其中,`hidden_layer_sizes` 表示隐藏层节点数,`max_iter` 表示最大迭代次数。 使用深度学习库 PyTorch 实现前馈神经网络: ```python import torch import torch.nn as nn import torch.optim as optim class Net(nn.Module): def __init__(self, n_features, n_hidden, n_output): super(Net, self).__init__() self.fc1 = nn.Linear(n_features, n_hidden) self.fc2 = nn.Linear(n_hidden, n_output) def forward(self, x): x = torch.sigmoid(self.fc1(x)) x = torch.sigmoid(self.fc2(x)) return x net = Net(n_features=X_train.shape[1], n_hidden=4, n_output=1) optimizer = optim.Adam(net.parameters(), lr=0.01) criterion = nn.BCELoss() for epoch in range(1000): optimizer.zero_grad() inputs = torch.from_numpy(X_train).float() labels = torch.from_numpy(y_train.reshape(-1, 1)).float() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() outputs = net(torch.from_numpy(X_test).float()) y_pred = np.round(outputs.detach().numpy()) acc_pytorch = accuracy_score(y_test, y_pred) print('pytorch accuracy:', acc_pytorch) ``` 其中,`n_features` 表示输入特征数,`n_hidden` 表示隐藏层节点数,`n_output` 表示输出节点数。在训练时,使用 Adam 优化器和二元交叉熵损失函数。 最后,可以使用以下代码对比自己手写代码和机器学习库算法的结果: ```python y_pred = perceptron.predict(X_test) acc_perceptron = accuracy_score(y_test, y_pred) print('perceptron accuracy:', acc_perceptron) y_pred = nn.predict(X_test) acc_nn = accuracy_score(y_test, y_pred) print('nn accuracy:', acc_nn) print('sklearn accuracy:', acc_sklearn) print('pytorch accuracy:', acc_pytorch) ``` 其中,`accuracy_score` 函数用于计算分类准确率。
阅读全文

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

【K-means算法】{1} —— 使用Python实现K-means算法并处理Iris数据集

Iris数据集是一个经典的数据集,通常用于演示和测试机器学习算法,因为它包含多个类别且各特征之间有明显的区分。在处理Iris数据集时,K-means可以有效发现数据的结构,将样本点分成不同的类别。
recommend-type

怎么用python读取cifar10数据集.docx

数据集被划分为5个训练批次(每个含10000张图像)和1个测试批次(含10000张图像),确保每个类别在训练和测试批次中都有均衡的分布。 为了读取CIFAR-10数据集,我们需要使用pickle库,因为数据是以pickle格式存储的...
recommend-type

Python分割训练集和测试集的方法示例

在机器学习领域,数据预处理是至关重要的一步,其中训练集和测试集的划分是评估模型性能的关键。本文将详细讲解如何使用Python进行这一过程,特别是利用scikit-learn库中的`train_test_split`函数。 首先,让我们...
recommend-type

python 实现对数据集的归一化的方法(0-1之间)

在数据分析和机器学习领域,数据预处理是至关重要的一步,其中归一化是常见的预处理技术之一。归一化能够确保不同尺度的数据在同一尺度上进行比较,提高算法的效率和准确性。本文将详细介绍如何使用Python的`sklearn...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。