给出一个jetson使用pytorch训练图像识别模型的例子
时间: 2023-12-07 15:02:38 浏览: 71
pytorch使用指定GPU训练的实例
5星 · 资源好评率100%
以下是一个使用Jetson Nano进行图像分类训练的示例:
1. 安装PyTorch和Torchvision
首先,您需要在Jetson Nano上安装PyTorch和Torchvision。可以通过以下命令安装:
```
sudo apt-get install python3-pip libopenblas-dev libblas-dev m4 cmake cython python3-dev python3-yaml python3-setuptools
pip3 install numpy torch torchvision
```
2. 获取数据集
接下来,您需要获取一个图像分类数据集。您可以在Kaggle等网站上找到许多数据集。这里我们以CIFAR-10数据集为例,可以通过以下命令下载:
```
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxvf cifar-10-python.tar.gz
```
3. 准备数据
接下来,您需要将数据集转换为PyTorch所需的格式。您可以使用以下代码:
```python
import torchvision.datasets as datasets
import torchvision.transforms as transforms
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
```
4. 定义模型
接下来,您需要定义一个CNN模型。以下是一个简单的CNN模型:
```python
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
```
5. 训练模型
现在您已经准备好训练模型了。以下是训练过程的代码:
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
6. 测试模型
最后,您可以测试模型的准确性。以下是测试代码:
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
这就是一个使用Jetson Nano进行图像分类训练的示例!
阅读全文