wgan-gp网络中,生成器的loss一直增加,判别器的loss一直降低是为什么
时间: 2023-04-11 12:01:26 浏览: 137
这可能是由于生成器的设计不够好,或者训练数据集不够充分,导致生成器无法生成高质量的样本,而判别器则能够更好地区分真实样本和生成样本,从而导致生成器的loss增加,判别器的loss降低。可以尝试调整生成器的架构或者增加训练数据集来解决这个问题。
相关问题
wgan-gp代码
WGAN-GP是一种基于GAN的深度学习模型,它使用了梯度惩罚技术(Gradient Penalty,GP)来解决GAN训练过程中的不稳定性和模式崩溃问题。以下是一个简单的WGAN-GP的PyTorch实现代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义生成器和判别器的网络结构
class Generator(nn.Module):
def __init__(self, latent_dim=100, img_shape=(1, 28, 28)):
super(Generator, self).__init__()
self.latent_dim = latent_dim
self.img_shape = img_shape
self.model = nn.Sequential(
nn.Linear(self.latent_dim, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 256),
nn.BatchNorm1d(256, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, np.prod(self.img_shape)),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
def __init__(self, img_shape=(1, 28, 28)):
super(Discriminator, self).__init__()
self.img_shape = img_shape
self.model = nn.Sequential(
nn.Linear(np.prod(self.img_shape), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
)
def forward(self, img):
img = img.view(img.size(0), -1)
validity = self.model(img)
return validity
# 定义WGAN-GP模型
class WGAN_GP(nn.Module):
def __init__(self, latent_dim=100, img_shape=(1, 28, 28), lambda_gp=10):
super(WGAN_GP, self).__init__()
self.generator = Generator(latent_dim, img_shape)
self.discriminator = Discriminator(img_shape)
self.lambda_gp = lambda_gp
def forward(self, z):
return self.generator(z)
def gradient_penalty(self, real_images, fake_images):
batch_size = real_images.size(0)
# 随机生成采样权重
alpha = torch.rand(batch_size, 1, 1, 1).cuda()
alpha = alpha.expand_as(real_images)
# 生成采样图像
interpolated = (alpha * real_images) + ((1 - alpha) * fake_images)
interpolated.requires_grad_(True)
# 计算插值图像的判别器输出
prob_interpolated = self.discriminator(interpolated)
# 计算梯度
gradients = torch.autograd.grad(outputs=prob_interpolated, inputs=interpolated,
grad_outputs=torch.ones(prob_interpolated.size()).cuda(),
create_graph=True, retain_graph=True)[0]
# 计算梯度惩罚项
gradients = gradients.view(batch_size, -1)
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * self.lambda_gp
return gradient_penalty
# 定义训练函数
def train_wgan_gp(generator, discriminator, dataloader, num_epochs=200, batch_size=64, lr=0.0002, betas=(0.5, 0.999)):
# 损失函数
adversarial_loss = torch.nn.MSELoss()
# 优化器
optimizer_G = optim.Adam(generator.parameters(), lr=lr, betas=betas)
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr, betas=betas)
for epoch in range(num_epochs):
for i, (imgs, _) in enumerate(dataloader):
batch_size = imgs.shape[0]
# 配置设备
real_imgs = imgs.cuda()
# 训练判别器
optimizer_D.zero_grad()
# 随机生成噪声
z = torch.randn(batch_size, 100).cuda()
# 生成假图像
fake_imgs = generator(z)
# 计算判别器损失
loss_D = -torch.mean(discriminator(real_imgs)) + torch.mean(discriminator(fake_imgs))
# 计算梯度惩罚项
gp = discriminator.gradient_penalty(real_imgs, fake_imgs)
loss_D += gp
# 反向传播和优化
loss_D.backward()
optimizer_D.step()
# 限制判别器的参数范围
for p in discriminator.parameters():
p.data.clamp_(-0.01, 0.01)
# 训练生成器
optimizer_G.zero_grad()
# 随机生成噪声
z = torch.randn(batch_size, 100).cuda()
# 生成假图像
fake_imgs = generator(z)
# 计算生成器损失
loss_G = -torch.mean(discriminator(fake_imgs))
# 反向传播和优化
loss_G.backward()
optimizer_G.step()
# 打印损失
if i % 50 == 0:
print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, num_epochs, i, len(dataloader), loss_D.item(), loss_G.item()))
```
在使用该代码时,需要先准备好数据集并将其转换为PyTorch的DataLoader格式,并调用train_wgan_gp函数进行训练。
WGAN-GP训练mnist数据集
以下是使用WGAN-GP训练mnist数据集的步骤:
1.导入必要的库和模块
```python
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
```
2.加载mnist数据集
```python
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # 将像素值归一化到[-1, 1]之间
BUFFER_SIZE = 60000
BATCH_SIZE = 256
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
```
3.定义生成器和判别器模型
```python
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # 注意:batch size 没有限制
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
```
4.定义损失函数和优化器
```python
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
def discriminator_loss(real_output, fake_output):
real_loss = tf.reduce_mean(real_output)
fake_loss = tf.reduce_mean(fake_output)
return fake_loss - real_loss
def generator_loss(fake_output):
return -tf.reduce_mean(fake_output)
```
5.定义训练函数
```python
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
```
6.训练模型
```python
EPOCHS = 100
noise_dim = 100
num_examples_to_generate = 16
# 我们将重复使用该种子(因此在动画 GIF 中更容易可视化进度)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
generator = make_generator_model()
discriminator = make_discriminator_model()
for epoch in range(EPOCHS):
for image_batch in train_dataset:
train_step(image_batch)
# 每 15 个 epoch 生成一次图片
if epoch % 15 == 0:
generate_and_save_images(generator, epoch + 1, seed)
# 生成最终的图片
generate_and_save_images(generator, EPOCHS, seed)
```
7.生成图片
```python
def generate_and_save_images(model, epoch, test_input):
# 注意 training` 设定为 False
# 因此,所有层都在推理模式下运行(batchnorm)。
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
```
相关推荐













